DL06 IBox Instructions PLC User Manual Supplement

Manual Number: DL06-IBOX-S

/ WARNING 🗡

Thank you for purchasing automation equipment from Automationdirect.comTM, doing business as AutomationDirect. We want your new automation equipment to operate safely. Anyone who installs or uses this equipment should read this publication (and any other relevant publications) before installing or operating the equipment.

To minimize the risk of potential safety problems, you should follow all applicable local and national codes that regulate the installation and operation of your equipment. These codes vary from area to area and usually change with time. It is your responsibility to determine which codes should be followed, and to verify that the equipment, installation, and operation is in compliance with the latest revision of these codes.

At a minimum, you should follow all applicable sections of the National Fire Code, National Electrical Code, and the codes of the National Electrical Manufacturer's Association (NEMA). There may be local regulatory or government offices that can also help determine which codes and standards are necessary for safe installation and operation.

Equipment damage or serious injury to personnel can result from the failure to follow all applicable codes and standards. We do not guarantee the products described in this publication are suitable for your particular application, nor do we assume any responsibility for your product design, installation, or operation.

Our products are not fault-tolerant and are not designed, manufactured or intended for use or resale as on-line control equipment in hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines, or weapons systems, in which the failure of the product could lead directly to death, personal injury, or severe physical or environmental damage ("High Risk Activities"). AutomationDirect specifically disclaims any expressed or implied warranty of fitness for High Risk Activities.

For additional warranty and safety information, see the Terms and Conditions section of our catalog. If you have any questions concerning the installation or operation of this equipment, or if you need additional information, please call us at 770-844-4200.

This publication is based on information that was available at the time it was printed. At AutomationDirect we constantly strive to improve our products and services, so we reserve the right to make changes to the products and/or publications at any time without notice and without any obligation. This publication may also discuss features that may not be available in certain revisions of the product.

Trademarks

This publication may contain references to products produced and/or offered by other companies. The product and company names may be trademarked and are the sole property of their respective owners. AutomationDirect disclaims any proprietary interest in the marks and names of others.

Copyright 2006, Automationdirect.com™ Incorporated All Rights Reserved

No part of this manual shall be copied, reproduced, or transmitted in any way without the prior, written consent of Automationdirect.comTM Incorporated. AutomationDirect retains the exclusive rights to all information included in this document.

AVERTISSEMENT A

Nous vous remercions d'avoir acheté l'équipement d'automatisation de Automationdirect.com™, en faisant des affaires comme AutomationDirect. Nous tenons à ce que votre nouvel équipement d'automatisation fonctionne en toute sécurité. Toute personne qui installe ou utilise cet équipement doit lire la présente publication (et toutes les autres publications pertinentes) avant de l'installer ou de l'utiliser.

Afin de réduire au minimum le risque d'éventuels problèmes de sécurité, vous devez respecter tous les codes locaux et nationaux applicables régissant l'installation et le fonctionnement de votre équipement. Ces codes diffèrent d'une région à l'autre et, habituellement, évoluent au fil du temps. Il vous incombe de déterminer les codes à respecter et de vous assurer que l'équipement, l'installation et le fonctionnement sont conformes aux exigences de la version la plus récente de ces codes.

Vous devez, à tout le moins, respecter toutes les sections applicables du Code national de prévention des incendies, du Code national de l'électricité et des codes de la National Electrical Manufacturer's Association (NEMA). Des organismes de réglementation ou des services gouvernementaux locaux peuvent également vous aider à déterminer les codes ainsi que les normes à respecter pour assurer une installation et un fonctionnement sûrs.

L'omission de respecter la totalité des codes et des normes applicables peut entraîner des dommages à l'équipement ou causer de graves blessures au personnel. Nous ne garantissons pas que les produits décrits dans cette publication conviennent à votre application particulière et nous n'assumons aucune responsabilité à l'égard de la conception, de l'installation ou du fonctionnement de votre produit.

Nos produits ne sont pas insensibles aux défaillances et ne sont ni conçus ni fabriqués pour l'utilisation ou la revente en tant qu'équipement de commande en ligne dans des environnements dangereux nécessitant une sécurité absolue, par exemple, l'exploitation d'installations nucléaires, les systèmes de navigation aérienne ou de communication, le contrôle de la circulation aérienne, les équipements de survie ou les systèmes d'armes, pour lesquels la défaillance du produit peut provoquer la mort, des blessures corporelles ou de graves dommages matériels ou environnementaux («activités à risque élevé»). La société AutomationDirect nie toute garantie expresse ou implicite d'aptitude à l'emploi en ce qui a trait aux activités à risque élevé.

Pour des renseignements additionnels touchant la garantie et la sécurité, veuillez consulter la section Modalités et conditions de notre documentation. Si vous avez des questions au sujet de l'installation ou du fonctionnement de cet équipement, ou encore si vous avez besoin de renseignements supplémentaires, n'hésitez pas à nous téléphoner au 770-844-4200.

Cette publication s'appuie sur l'information qui était disponible au moment de l'impression. À la société AutomationDirect, nous nous efforçons constamment d'améliorer nos produits et services. C'est pourquoi nous nous réservons le droit d'apporter des modifications aux produits ou aux publications en tout temps, sans préavis ni quelque obligation que ce soit. La présente publication peut aussi porter sur des caractéristiques susceptibles de ne pas être offertes dans certaines versions révisées du produit.

Marques de commerce

La présente publication peut contenir des références à des produits fabriqués ou offerts par d'autres entreprises. Les désignations des produits et des entreprises peuvent être des marques de commerce et appartiennent exclusivement à leurs propriétaires respectifs. AutomationDirect nie tout intérêt dans les autres marques et désignations.

Copyright 2006, Automationdirect.com™ Incorporated Tous droits réservés

Nulle partie de ce manuel ne doit être copiée, reproduite ou transmise de quelque façon que ce soit sans le consentement préalable écrit de la société Automationdirect.comTM Incorporated. AutomationDirect conserve les droits exclusifs à l'égard de tous les renseignements contenus dans le présent document.

Overview

The Ibox Instructions listed in this supplement are in addition to the Standard RLL Instructions found in Chapter 5 of the DL06 User Manual. These new instructions are available when using *Direct*SOFT5 to program your DL06 PLC (the DL06 CPU requires firmware version v2.10 or later to use the new features in *Direct*SOFT5). For more information on *Direct*SOFT5 and to download our Free version, please visit our Web site at: www.automationdirect.com

Analog Helper IBoxes			
Instruction	lbox #	Page	
Analog Input / Output Combo Module Pointer Setup (ANLGCMB)	IB-462	6	
Analog Input Module Pointer Setup (ANLGIN)	IB-460	8	
Analog Output Module Pointer Setup (ANLGOUT)	IB-461	10	
Analog Scale 12 Bit BCD to BCD (ANSCL)	IB-423	12	
Analog Scale 12 Bit Binary to Binary (ANSCLB)	IB-403	14	
Filter Over Time - BCD (FILTER)	IB-422	16	
Filter Over Time - Binary (FILTERB)	IB-402	18	
Hi/Low Alarm - BCD (HILOAL)	IB-421	20	
Hi/Low Alarm - Binary (HILOALB)	IB-401	22	

Discrete Helper IBoxes		
Instruction	lbox #	Page
Off Delay Timer (OFFDTMR)	IB-302	24
On Delay Timer (ONDTMR)	IB-301	26
One Shot (ONESHOT)	IB-303	28
Push On / Push Off Circuit (PONOFF)	IB-300	30

Memory IBoxes			
Instruction Ibox # Pag			
Move Single Word (MOVEW)	IB-200	32	
Move Double Word (MOVED)	IB-201	34	

Math IBoxes			
Instruction	lbox #	Page	
BCD to Real with Implied Decimal Point (BCDTOR)	IB-560	36	
Double BCD to Real with Implied Decimal Point (BCDTORD)	IB-562	38	
Math - BCD (MATHBCD)	IB-521	40	
Math - Binary (MATHBIN)	IB-501	42	
Math - Real (MATHR)	IB-541	44	
Real to BCD with Implied Decimal Point and Rounding (RTOBCD)	IB-561	46	
Real to Double BCD with Implied Decimal Point and Rounding (RTOBCDD)	IB-563	48	
Square BCD (SQUARE)	IB-523	50	
Square Binary (SQUAREB)	IB-503	52	
Square Real(SQUARER)	IB-543	54	
Sum BCD Numbers (SUMBCD)	IB-522	56	
Sum Binary Numbers (SUMBIN)	IB-502	58	
Sum Real Numbers (SUMR)	IB-542	60	

Communication IBoxes		
Instruction	lbox #	Page
ECOM100 Configuration (ECOM100)	IB-710	62
ECOM100 Disable DHCP (ECDHCPD)	IB-736	64
ECOM100 Enable DHCP (ECDHCPE)	IB-735	66
ECOM100 Query DHCP Setting (ECDHCPQ)	IB-734	68
ECOM100 Send E-mail (ECEMAIL)	IB-711	70
ECOM100 Restore Default E-mail Setup (ECEMRDS)	IB-713	73
ECOM100 E-mail Setup (ECEMSUP)	IB-712	76
ECOM100 IP Setup (ECIPSUP)	IB-717	80
ECOM100 Read Description (ECRDDES)	IB-726	82
ECOM100 Read Gateway Address (ECRDGWA)	IB-730	84
ECOM100 Read IP Address (ECRDIP)	IB-722	86
ECOM100 Read Module ID (ECRDMID)	IB-720	88
ECOM100 Read Module Name (ECRDNAM)	IB-724	90
ECOM100 Read Subnet Mask (ECRDSNM)	IB-732	92
ECOM100 Write Description (ECWRDES)	IB-727	94
ECOM100 Write Gateway Address (ECWRGWA)	IB-731	96
ECOM100 Write IP Address (ECWRIP)	IB-723	98
ECOM100 Write Module ID (ECWRMID)	IB-721	100
ECOM100 Write Name (ECWRNAM)	IB-725	102
ECOM100 Write Subnet Mask (ECWRSNM)	IB-733	104
ECOM100 RX Network Read (ECRX)	IB-740	106
ECOM100 WX Network Write(ECWX)	IB-741	109
NETCFG Network Configuration (NETCFG)	IB-700	112
Network RX Read (NETRX)	IB-701	114
Network WX Write (NETWX)	IB-702	117

Counter I/O IBoxes			
Instruction	lbox #	Page	
CTRIO Configuration (CTRIO)	IB-1000	120	
CTRIO Add Entry to End of Preset Table (CTRADPT)	IB-1005	122	
CTRIO Clear Preset Table (CTRCLRT)	IB-1007	125	
CTRIO Edit Preset Table Entry (CTREDPT)	IB-1003	128	
CTRIO Edit Preset Table Entry and Reload (CTREDRL)	IB-1002	132	
CTRIO Initialize Preset Table (CTRINPT)	IB-1004	136	
CTRIO Initialize Preset Table (CTRINTR)	IB-1010	140	
CTRIO Load Profile (CTRLDPR)	IB-1001	144	
CTRIO Read Error (CTRRDER)	IB-1014	147	
CTRIO Run to Limit Mode (CTRRTLM)	IB-1011	149	
CTRIO Run to Position Mode (CTRRTPM)	IB-1012	152	
CTRIO Velocity Mode (CTRVELO)	IB-1013	155	
CTRIO Write File to ROM (CTRWFTR)	IB-1006	158	

Analog Input/Output Combo Module Pointer Setup (ANLGCMB) (IB-462)

DS5	Used	T
HPP	N/A	c

The Analog Input/Output Combo Module Pointer Setup instruction generates the logic to configure the pointer method for an analog input/output combination module on the first PLC scan following a Program to Run transition.

The ANLGCMB IBox instruction determines the data format and Pointer addresses based on the CPU type, the Base# and the module Slot#.

The Input Data Address is the starting location in user V-memory where the analog input data values will be stored, one location for each input channel enabled.

The Output Data Address is the starting location in user V-memory where the analog output data values will be placed by ladder code or

	0
Analog Input/Output Combo Mod	dule Pointer Setup
ANLGCMB	IB-462
Base # (K0-Local)	K0 •
Slot#	K0 •
Number of Input Channels	K1 •
Input Data Format (0-BCD 1-BIN)	K0 •
Input Data Address	V400 ·
Number of Output Channels	K1 •
Output Data Format (0-BCD 1-BIN)	K0 •
Output Data Address	V400 •

external device, one location for each output channel enabled.

Since the IBox logic only executes on the first scan, the instruction cannot have any input logic.

ANLGCMB Parameters

- Base # (K0-Local): must be 0 for DL06 PLC
- Slot #: specifies which PLC option slot is occupied by the analog module (1-4)
- Number of Input Channels: specifies the number of analog input channels to scan
- Input Data Format (0-BCD 1-BIN): specifies the analog input data format (BCD or Binary) the binary format may be used for displaying data on some OI panels
- Input Data Address: specifies the starting V-memory location that will be used to store the analog input data
- Number of Output Channels: specifies the number of analog output channels that will be used
- Output Data Format (0-BCD 1-BIN): specifies the format of the analog output data (BCD or Binary)
- Output Data Address: specifies the starting V-memory location that will be used to source the analog output data

Parameter	DL06 Range
Base # (KO-Local)K	K0 (local base only)
Slot # K	K1-4
Number of Input ChannelsK	K1-8
Input Data Format (0-BCD 1-BIN) K	BCD: K0; Binary: K1
Input Data AddressV	See DL06 V-memory map - Data Words
Number of Output Channels K	K1-8
Output Data Format (0-BCD 1-BIN)K	BCD: K0; Binary: K1
Output Data Address	See DL06 V-memory map - Data Words

ANLGCMB Example

In the following example, the ANLGCMB instruction is used to setup the pointer method for an analog I/O combination module that is installed in option slot 2. Four input channels are enabled and the analog data will be written to V2000 - V2003 in BCD format. Two output channels are enabled and the analog values will be read from V2100 - V2101 in BCD format.

	Analog Input/Output Combo Module Po	inter Setun
No permissive contact or input logic is used with this instruction	Analog Input/Output Combo Module Po ANLGCMB Base # (K0-Local) Slot # Number of Input Channels Input Data Format (0-BCD 1-BIN) Input Data Address Number of Output Channels Output Data Format (0-BCD 1-BIN) Output Data Address	inter Setup IB-462 K0 K2 K4 K0 V2000 K2 K0 V2100
	No permissive contact or input logic is used with this instruction	Analog Input/Output Combo Module Po ANLGCMB Base # (K0-Local) Slot # Number of Input Channels Input Data Format (0-BCD 1-BIN) Input Data Address Number of Output Channels Output Data Format (0-BCD 1-BIN) Output Data Address

Analog Input Module Pointer Setup (ANLGIN) (IB-460)

DS5	Used	
HPP	N/A	

Analog Input Module Pointer Setup generates the logic to configure the pointer method for \overline{A} one analog input module on the first PLC scan following a Program to Run transition.

This IBox determines the data format and Pointer addresses based on the CPU type, the Base#, and the Slot#.

The Input Data Address is the starting location in user V-memory where the analog input data values will be stored, one location for each input channel enabled.

Since this logic only executes on the first scan, this IBox cannot have any input logic.

<u>VX</u>		0
Analog Input Module Po	ointer Setup	
ANLGIN		IB-460
Base # (KO-Local)	K0	•
Slot #	K0	•
Number of Input Channels	K1	•
Input Data Format (0-BCD 1-BIN)	K0	•
Input Data Address	V400	•

ANLGIN Parameters

- Base # (K0-Local): must be 0 for DL06 PLC
- Slot #: specifies which PLC option slot is occupied by the analog module (1-4)
- Number of Input Channels: specifies the number of input channels to scan
- Input Data Format (0-BCD 1-BIN): specifies the analog input data format (BCD or Binary) the binary format may be used for displaying data on some OI panels
- Input Data Address: specifies the starting V-memory location that will be used to store the analog input data

Parameter	DL06 Range
Base # (KO-Local)K	K0 (local base only)
Slot #	K1-4
Number of Input ChannelsK	K1-8
Input Data Format (0-BCD 1-BIN)K	BCD: K0; Binary: K1
Input Data Address	See DL06 V-memory map - Data Words

ANLGIN Example

In the following example, the ANLGIN instruction is used to setup the pointer method for an analog input module that is installed in option slot 1. Eight input channels are enabled and the analog data will be written to V2000 - V2007 in BCD format.

1	No permissive contact or input logic is used with this instruction	Analog Input Module Pointer S ANLGIN Base # (K0-Local) Slot # Number of Input Channels Input Data Format (0-BCD 1-BIN) Input Data Address	etup IB-460 K0 K1 K8 K0 V2000
		Input Data Address	¥200

Analog Output Module Pointer Setup (ANLGOUT) (IB-461)

DS5	Used	
HPP	N/A	

Analog Output Module Pointer Setup generates the logic to configure the pointer method for one analog output module on the first PLC scan following a Program to Run transition.

This IBox determines the data format and Pointer addresses based on the CPU type, the Base#, and the Slot#.

The Output Data Address is the starting location in user V-memory where the analog output data values will be placed by ladder code or external device, one location for each output channel enabled.

Since this logic only executes on the first scan, this IBox cannot have any input logic.

N X X	0
Analog Output Module Po	inter Setup
ANLGOUT	IB-461
Base # (KO-Local)	K0 •
Slot #	K0 •
Number of Output Channels	K1 •
Output Data Format (0-BCD 1-BIN)	K0 •
Output Data Address	V400 •

ANLGOUT Parameters

- Base # (K0-Local): must be 0 for DL06 PLC
- Slot #: specifies which PLC option slot is occupied by the analog module (1-4)
- Number of Output Channels: specifies the number of analog output channels that will be used
- Output Data Format (0-BCD 1-BIN): specifies the format of the analog output data (BCD or Binary)
- Output Data Address: specifies the starting V-memory location that will be used to source the analog output data

Parameter	DL06 Range
Base # (K0-Local) K	K0 (local base only)
Slot #	K1-4
Number of Output Channels K	K1-8
Output Data Format (0-BCD 1-BIN) K	BCD: K0; Binary: K1
Output Data Address	See DL06 V-memory map - Data Words

ANLGOUT Example

In the following example, the ANLGOUT instruction is used to setup the pointer method for an analog output module that is installed in option slot 3. Two output channels are enabled and the analog data will be read from V2100 - V2101 in BCD format.

	Analog Output Module Pointer Se	tup
λ.	ANLGOUT	IB-461
	Base # (KO-Local)	K0
No permissive contact or input logic is	Slot#	K3
used with this instruction	Number of Output Channels	K2
	Output Data Format (0-BCD 1-BIN)	K0
	Output Data Address	V2100

Analog Scale 12 Bit BCD to BCD (ANSCL) (IB-423)

DS5 Used Analog Scale 12 Bit BCD to BCD scales a 12 bit BCD analog value (0-4095 BCD) into HPP N/A BCD engineering units. You specify the engineering unit high value (when raw is 4095), and

> the engineering low value (when raw is 0), and the output V memory address you want the to place the scaled engineering unit value. The engineering units are generated as BCD and can be the full range of 0 to 9999 (see ANSCLB - Analog Scale 12 Bit Binary to Binary if your raw units are in Binary format).

Note that this IBox only works with unipolar unsigned raw values. It does NOT work with bipolar or sign plus magnitude raw values.

N X X	0
Analog Scale 12	Bit BCD to BCD
ANSCL	IB-423
Raw (0-4095 BCD)	TA0 •
High Engineering	ко •
Low Engineering	ко •
Engineering (BCD)	TA0 •

ANSCL Parameters

- Raw (0-4095 BCD): specifies the V-memory location of the unipolar unsigned raw 0-4095 unscaled value
- High Engineering: specifies the high engineering value when the raw input is 4095
- Low Engineering: specifies the low engineering value when the raw input is 0
- Engineering (BCD): specifies the V-memory location where the scaled engineering BCD value will be placed

Parameter	DL06 Range
Raw (0-4095 BCD) V,P	See DL06 V-memory map - Data Words
High Engineering	K0-9999
Low EngineeringK	K0-9999
Engineering (BCD)V,P	See DL06 V-memory map - Data Words

ANSCL Example

In the following example, the ANSCL instruction is used to scale a raw value (0-4095 BCD) that is in V2000. The engineering scaling range is set 0-100 (low engineering value - high engineering value). The scaled value will be placed in V2100 in BCD format.

	SP1		
		Analog Scale 12 Bit BC	D to BCD
1		ANSCL	IB-423
		Raw (0-4095 BCD)	V2000
		High Engineering	K100
		Low Engineering	K0
		Engineering (BCD)	V2100

Analog Scale 12 Bit Binary to Binary (ANSCLB) (IB-403)

DS5	Used
HPP	N/A

Analog Scale 12 Bit Binary to Binary scales a 12 bit binary analog value (0-4095 decimal) into binary (decimal) engineering units. You specify the engineering unit high value (when

raw is 4095), and the engineering low value (when raw is 0), and the output V memory address you want to place the scaled engineering unit value. The engineering units are generated as binary and can be the full range of 0 to 65535 (see ANSCL - Analog Scale 12 Bit BCD to BCD if your raw units are in BCD format).

Note that this IBox only works with unipolar unsigned raw values. It does NOT work with bipolar, sign plus magnitude, or signed 2's complement raw values.

N N N N N N N N N N N N N N	٥
Analog Scale 12 B	it Binary to Binary
ANSCLB	IB-403
Raw (12 bit binary)	TA0 •
High Engineering	ко •
Low Engineering	ко •
Engineering (binary)	TA0 •

ANSCLB Parameters

- Raw (12 bit binary): specifies the V-memory location of the unipolar unsigned raw decimal unscaled value (12 bit binary = 0-4095 decimal)
- High Engineering: specifies the high engineering value when the raw input is 4095 decimal
- Low Engineering: specifies the low engineering value when the raw input is 0 decimal
- Engineering (binary): specifies the V-memory location where the scaled engineering decimal value will be placed

Parameter	DL06 Range
Raw (12 bit binary)V,P	See DL06 V-memory map - Data Words
High Engineering	K0-65535
Low EngineeringK	K0-65535
Engineering (binary) V,P	See DL06 V-memory map - Data Words

ANSCLB Example

In the following example, the ANSCLB instruction is used to scale a raw value (0-4095 binary) that is in V2000. The engineering scaling range is set 0-1000 (low engineering value - high engineering value). The scaled value will be placed in V2100 in binary format.

	SP1	Analog Scale 12 Bit Binary	to Binary
1		ANSCLB	IB-403
		Raw (12 bit binary)	V2000
		High Engineering	K1000
		Low Engineering	K0
		Engineering (binary)	V2100

Filter Over Time - BCD (FILTER) (IB-422)

Used Filter Over Time BCD will perform a first-order filter on the Raw Data on a defined time N/A interval. The equation is:

 $\sqrt{New} = Old + [(Raw - Old) / FDC]$

where, New: New Filtered Value Old: Old Filtered Value FDC: Filter Divisor Constant Raw: Raw Data

The Filter Divisor Constant is an integer in the range K1 to K100, such that if it equaled K1 then no filtering would be done.

ミ メマ	0
Filter Over Tim	ne - BCD
FILTER	IB-422
Filter Freq Timer	T0 •
Filter Freq Time (0.01 sec)	K0 •
Raw Data (BCD)	TA0 •
Filter Divisor (1-100)	K1 •
Filtered Value (BCD)	TA0 •

The rate at which the calculation is performed is specified by time in hundredths of a second (0.01 seconds) as the Filter Freq Time parameter. Note that this Timer instruction is embedded in the IBox and must NOT be used anywhere else in your program. Power flow controls whether the calculation is enabled. If it is disabled, the Filter Value is not updated. On the first scan from Program to Run mode, the Filter Value is initialized to 0 to give the calculation a consistent starting point.

FILTER Parameters

- Filter Frequency Timer: specifies the Timer (T) number which is used by the Filter instruction
- Filter Frequency Time (0.01sec): specifies the rate at which the calculation is performed
- Raw Data (BCD): specifies the V-memory location of the raw unfiltered BCD value
- Filter Divisor (1-100): this constant used to control the filtering effect. A larger value will increase the smoothing effect of the filter. A value of 1 results with no filtering.
- Filtered Value (BCD): specifies the V-memory location where the filtered BCD value will be placed

Parameter	DL06 Range
Filter Frequency TimerT	T0-377
Filter Frequency Time (0.01 sec)K	K0-9999
Raw Data (BCD)V	See DL06 V-memory map - Data Words
Filter Divisor (1-100)	K1-100
Filtered Value (BCD)V	See DL06 V-memory map - Data Words

DS5

HPP

FILTER Example

In the following example, the Filter instruction is used to filter a BCD value that is in V2000. Timer(T0) is set to 0.5 sec, the rate at which the filter calculation will be performed. The filter constant is set to 2. A larger value will increase the smoothing effect of the filter. A value of 1 results with no filtering. The filtered value will be placed in V2100.

	SP1	Filter Over Time - BCD	
1		FILTER	IB-422
		Filter Freq Timer	то
		Filter Freq Time (0.01 sec)	K50
		Raw Data (BCD)	V2000
		Filter Divisor (1-100)	K2
		Filtered Value (BCD)	V2100

Filter Over Time - Binary (FILTERB) (IB-402)

DS5 Used Filter Over Time in Binary (decimal) will perform a first-order filter on the Raw Data on a defined time interval. The equation is

New = Old + [(Raw - Old) / FDC] where

New: New Filtered Value

Old: Old Filtered Value

FDC: Filter Divisor Constant

Raw: Raw Data

The Filter Divisor Constant is an integer in the range K1 to K100, such that if it equaled K1 then no filtering would be done.

√X]%		0
Filter Over Time	e - Binary	
FILTERB		IB-402
Filter Freq Timer	TO	•
Filter Freq Time (0.01 sec)	K0	•
Raw Data (Binary)	TA0	•
Filter Divisor (1-100)	K1	•
Filtered Value (Binary)	TA0	•

The rate at which the calculation is performed is specified by time in hundredths of a second (0.01 seconds) as the Filter Freq Time parameter. Note that this Timer instruction is embedded in the IBox and must NOT be used anywhere else in your program. Power flow controls whether the calculation is enabled. If it is disabled, the Filter Value is not updated. On the first scan from Program to Run mode, the Filter Value is initialized to 0 to give the calculation a consistent starting point.

FILTERB Parameters

- Filter Frequency Timer: specifies the Timer (T) number which is used by the Filter instruction
- Filter Frequency Time (0.01sec): specifies the rate at which the calculation is performed
- Raw Data (Binary): specifies the V-memory location of the raw unfiltered binary (decimal) value
- Filter Divisor (1-100): this constant used to control the filtering effect. A larger value will increase the smoothing effect of the filter. A value of 1 results with no filtering.
- Filtered Value (Binary): specifies the V-memory location where the filtered binary (decimal) value will be placed

Parameter	DL06 Range
Filter Frequency TimerT	T0-377
Filter Frequency Time (0.01 sec)K	K0-9999
Raw Data (Binary) V	See DL06 V-memory map - Data Words
Filter Divisor (1-100)	K1-100
Filtered Value (Binary) V	See DL06 V-memory map - Data Words

FILTERB Example

In the following example, the FILTERB instruction is used to filter a binary value that is in V2000. Timer(T1) is set to 0.5 sec, the rate at which the filter calculation will be performed. The filter constant is set to 3. A larger value will increase the smoothing effect of the filter. A value of 1 results with no filtering. The filtered value will be placed in V2100

	SP1	Filter Over Time - Binar	v
1		FILTERB	, IB-402
		Filter Freq Timer	T1
		Filter Freq Time (0.01 sec)	K50
		Raw Data (Binary)	V2000
		Filter Divisor (1-100)	K3.
		Filtered Value (Binary)	V2100

Hi/Low Alarm - BCD (HILOAL) (IB-421)

DS5	Used
HPP	N/A

Hi/Low Alarm - BCD monitors a BCD value V memory location and sets four possible alarm states, High-High, High, Low, and Low-Low whenever the IBox has power flow. You enter the alarm thresholds as constant K BCD values (K0-K9999) and/or BCD value V memory

locations.

You must ensure that threshold limits are valid, that is $HH \ge H \ge L \ge LL$. Note that when the High-High or Low-Low alarm condition is true, that the High and Low alarms will also be set, respectively. This means you may use the same threshold limit and same alarm bit for the High-High and the High alarms in case you only need one "High" alarm. Also note that the boundary conditions are inclusive. That is, if the Low boundary is K50, and the Low-Low

× X 刻		0
Hi/Low Alar	m - BCD	
HILOAL		IB-421
Monitoring Value (BCD)	TAO	•
High-High Limit	TAO	•
High-High Alarm	CO	•
High Limit	TA0	•
High Alarm	CO	•
Low Limit	TA0	•
Low Alarm	CO	•
Low-Low Limit	TA0	•
Low-Low Alarm	CO	•

boundary is K10, and if the Monitoring Value equals 10, then the Low Alarm AND the Low-Low alarm will both be ON. If there is no power flow to the IBox, then all alarm bits will be turned off regardless of the value of the Monitoring Value parameter.

HILOAL Parameters

- Monitoring Value (BCD): specifies the V-memory location of the BCD value to be monitored
- High-High Limit: V-memory location or constant specifies the high-high alarm limit
- High-High Alarm: On when the high-high limit is reached
- High Limit: V-memory location or constant specifies the high alarm limit
- High Alarm: On when the high limit is reached
- Low Limit: V-memory location or constant specifies the low alarm limit
- Low Alarm: On when the low limit is reached
- Low-Low Limit: V-memory location or constant specifies the low-low alarm limit
- Low-Low Alarm: On when the low-low limit is reached

Parameter	DL06 Range
Monitoring Value (BCD)V	See DL06 V-memory map - Data Words
High-High Limit	K0-9999; or see DL06 V-memory map - Data Words
High-High Alarm X, Y, C, GX,GY, B	See DL06 V-memory map
High Limit	K0-9999; or see DL06 V-memory map - Data Words
High Alarm X, Y, C, GX,GY, B	See DL06 V-memory map
Low LimitV, K	K0-9999; or see DL06 V-memory map - Data Words
Low Alarm X, Y, C, GX,GY,B	See DL06 V-memory map
Low-Low LimitV, K	K0-9999; or see DL06 V-memory map - Data Words
Low-Low AlarmX, Y, C, GX,GY, B	See DL06 V-memory map

HILOAL Example

In the following example, the HILOAL instruction is used to monitor a BCD value that is in V2000. If the value in V2000 meets/exceeds the high limit of K900, C101 will turn on. If the value continues to increase to meet/exceed the high-high limit, C100 will turn on. Both bits would be on in this case. The high and high-high limits and alarms can be set to the same value if one "high" limit or alarm is desired to be used.

If the value in V2000 meets or falls below the low limit of K200, C102 will turn on. If the value continues to decrease to meet or fall below the low-low limit of K100, C103 will turn on. Both bits would be on in this case. The low and low-low limits and alarms can be set to the same value if one "low" limit or alarm is desired to be used.

SP1	Hill ow Alarm - BCC)
	Hi/Low Alarm - BCD HILOAL Monitoring Value (BCD) High-High Limit High-High Alarm High Limit High Alarm Low Limit Low Alarm Low-Low Limit	IB-421 V2000 K1000 C100 K900 C101 K200 C102 K100 C102
		Hi/Low Alarm - BCD HILOAL Monitoring Value (BCD) High-High Limit High-High Alarm High Alarm Low Limit Low Alarm Low-Low Limit Low-Low Limit Low-Low Alarm

Hi/Low Alarm - Binary (HILOALB) (IB-401)

DS5	Used
HPP	N/A

Hi/Low Alarm - Binary monitors a binary (decimal) V memory location and sets four possible alarm states, High-High, High, Low, and Low-Low whenever the IBox has power flow. You enter the alarm thresholds as constant K decimal values (K0-K65535) and/or binary

(decimal) V memory locations.

You must ensure that threshold limits are valid, that is $HH \ge H \ge L \ge LL$. Note that when the High-High or Low-Low alarm condition is true, that the High and Low alarms will also be set, respectively. This means you may use the same threshold limit and same alarm bit for the High-High and the High alarms in case you only need one "High" alarm. Also note that the boundary conditions are inclusive. That is, if the Low boundary is K50, and the Low-Low boundary is K10, and if the Monitoring Value

✓X [™]	0
Hi/Low Alarm	n - Binary
HILOALB	IB-401
Monitoring Value (Binary)	TA0 •
High-High Limit	TA0 •
High-High Alarm	C0 •
High Limit	TA0 •
High Alarm	C0 •
Low Limit	TA0 •
Low Alarm	C0 •
Low-Low Limit	TA0 •
Low-Low Alarm	C0 •

equals 10, then the Low Alarm AND the Low-Low alarm will both be ON. If there is no power flow to the IBox, then all alarm bits will be turned off regardless of the value of the Monitoring Value parameter.

HILOALB Parameters

- Monitoring Value (Binary): specifies the V-memory location of the Binary value to be monitored
- High-High Limit: V-memory location or constant specifies the high-high alarm limit
- High-High Alarm: On when the high-high limit is reached
- High Limit: V-memory location or constant specifies the high alarm limit
- High Alarm: On when the high limit is reached
- Low Limit: V-memory location or constant specifies the low alarm limit
- Low Alarm: On when the low limit is reached
- Low-Low Limit: V-memory location or constant specifies the low-low alarm limit
- Low-Low Alarm: On when the low-low limit is reached

Parameter	DL06 Range
Monitoring Value (Binary)V	See DL06 V-memory map - Data Words
High-High Limit	K0-65535; or see DL06 V-memory map - Data Words
High-High Alarm X, Y, C, GX,GY, B	See DL06 V-memory map
High Limit	K0-65535; or see DL06 V-memory map - Data Words
High AlarmX, Y, C, GX,GY, B	See DL06 V-memory map
Low LimitV, K	K0-65535; or see DL06 V-memory map - Data Words
Low Alarm X, Y, C, GX,GY,B	See DL06 V-memory map
Low-Low LimitV, K	K0-65535; or see DL06 V-memory map - Data Words
Low-Low AlarmX, Y, C, GX,GY, B	See DL06 V-memory map

HILOALB Example

In the following example, the HILOALB instruction is used to monitor a binary value that is in V2000. If the value in V2000 meets/exceeds the high limit of the binary value in V2011, C101 will turn on. If the value continues to increase to meet/exceed the high-high limit value in V2010, C100 will turn on. Both bits would be on in this case. The high and high-high limits and alarms can be set to the same V-memory location/value if one "high" limit or alarm is desired to be used.

If the value in V2000 meets or falls below the low limit of the binary value in V2012, C102 will turn on. If the value continues to decrease to meet or fall below the low-low limit in V2013, C103 will turn on. Both bits would be on in this case. The low and low-low limits and alarms can be set to the same V-memory location/value if one "low" limit or alarm is desired to be used.

	C120	Hi/Low Alarm - Binary	
1		HILOALB	IB-401
		Monitoring Value (Binary)	V2000
		High-High Limit	V2010
		High-High Alarm	C100
		High Limit	V2011
		High Alarm	C101
		Low Limit	V2012
		Low Alarm	C102
		Low-Low Limit	V2013
		Low-Low Alarm	C103

Off Delay Timer (OFFDTMR) (IB-302)

DS5	Used	
HPP	N/A	

Off Delay Timer will delay the "turning off" of the Output parameter by the specified Off Delay Time (in hundredths of a second) based on the power flow into the IBox. Once the IBox receives power, the Output bit will turn

on immediately. When the power flow to the IBox turns off, the Output bit WILL REMAIN ON for the specified amount of time (in hundredths of a second). Once the Off Delay Time has expired, the output will turn Off. If the power flow to the IBox comes back on BEFORE the Off Delay Time, then the timer is RESET and the Output will remain On - so you must continuously have NO power flow to the IBox for AT LEAST

N N	0
Off Delay T	ïmer
OFFDTMR	IB-302
Timer Number	то •
Off Delay Time (0.01 sec)	TAO •
Output	C0 •

the specified Off Delay Time before the Output will turn Off.

This IBox utilizes a Timer resource (TMRF), which cannot be used anywhere else in your program.

OFFDTMR Parameters

- Timer Number: specifies the Timer(TMRF) number which is used by the OFFDTMR instruction
- Off Delay Time (0.01sec): specifies how long the Output will remain on once power flow to the Ibox is removed
- Output: specifies the output that will be delayed "turning off" by the Off Delay Time.

Parameter	DL06 Range
Timer NumberT	T0-377
Off Delay Time K,V	K0-9999; See DL06 V-memory map - Data Words
Output X, Y, C, GX,GY, B	See DL06 V-memory map

OFFDTMR Example

In the following example, the OFFDTMR instruction is used to delay the "turning off" of output C20. Timer 2 (T2) is set to 5 seconds, the "off-delay" period.

When C100 turns on, C20 turns on and will remain on while C100 is on. When C100 turns off, C20 will remain for the specified Off Delay Time (5s), and then turn off.

	Ç100	Off Delay Timer	
1		OFFDTMR	IB-302
		Timer Number	T2
		Off Delay Time (0.01 sec)	K500
		Output	C20

Example timing diagram

On Delay Timer (ONDTMR) (IB-301)

DS5	Used
HPP	N/A

On Delay Timer will delay the "turning on" of the Output parameter by the specified amount of time (in hundredths of a second) based on the power flow into the IBox. Once the

IBox loses power, the Output is turned off immediately. If the power flow turns off BEFORE the On Delay Time, then the timer is RESET and the Output is never turned on, so you must have continuous power flow to the IBox for at least the specified On Delay Time before the Output turns On.

This IBox utilizes a Timer resource (TMRF), which cannot be used anywhere else in your program.

VXX		0
On Delay 1	Fimer	
ONDTMR		IB-301
Timer Number	TO	•
On Delay Time (0.01 sec)	TA0	•
Output	CO	•

ONDTMR Parameters

- Timer Number: specifies the Timer(TMRF) number which is used by the ONDTMR instruction
- On Delay Time (0.01sec): specifies how long the Output will remain on once power flow to the Ibox is removed
- Output: specifies the output that will be delayed "turning on" by the On Delay Time.

Parameter	DL06 Range
Timer NumberT	T0-377
On Delay TimeK,V	K0-9999; See DL06 V-memory map - Data Words
Output X, Y, C, GX,GY, B	See DL06 V-memory map

ONDTMR Example

In the following example, the ONDTMR instruction is used to delay the "turning on" of output C21. Timer 1 (T1) is set to 2 seconds, the "on-delay" period.

When C101 turns on, C21 is delayed turning on by 2 seconds. When C101 turns off, C21 turns off immediately.

	Ç101	On Delay Timer	
1		ONDTMR	IB-301
		Timer Number	T1
		On Delay Time (0.01 sec)	K200
		Output	C21

Example timing diagram

One Shot (ONESHOT) (IB-303)

DS5	Used
HPP	N/A

One Shot will turn on the given bit output parameter for one scan on an OFF to ON transition of the power flow into the IBox. This IBox is simply a different name for the PD Coil (Positive Differential).

ONESHOT Parameters

• Discrete Output: specifies the output that will be on for one scan

× X 彩	0
One Shot	
ONESHOT	IB-303
Discrete Output C0	•

Parameter	DL06 Range
Discrete Output X, Y, C	See DL06 V-memory map

ONESHOT Example

In the following example, the ONESHOT instruction is used to turn C100 on for one PLC scan after C0 goes from an off to on transition. The input logic must produce an off to on transition to execute the One Shot instruction.

Example timing diagram

Push On / Push Off Circuit (PONOFF) (IB-300)

DS5	Used
HPP	N/A

Push On/Push Off Circuit toggles an output state whenever its input power flow transitions from off to on. Requires an extra bit parameter for scan-to-scan state information. This extra bit must NOT be used anywhere else in the program. This is also known as a "flip-flop circuit".

PONOFF Parameters

- Discrete Input: specifies the input that will toggle the specified output
- Discrete Output: specifies the output that will be "turned on/off" or toggled
- Internal State: specifies a work bit that is used by the instruction

ヘ メ ぼ		0
Push On/F	ush Off Circuit	
PONOFF		IB-300
Discrete Input	CO	•
Discrete Output	CO	•
Internal State	C0	•

Parameter	DL06 Range
Discrete Input X,Y,C,S,T,CT,GX,GY,SP,B,PB	See DL06 V-memory map
Discrete OutputX,Y,C,GX,GY,B	See DL06 V-memory map
Internal State X, Y, C	See DL06 V-memory map

PONOFF Example

In the following example, the PONOFF instruction is used to control the on and off states of the output C20 with a single input C10. When C10 is pressed once, C20 turns on. When C10 is pressed again, C20 turns off. C100 is an internal bit used by the instruction.

	Push On/Push Off	Circuit	
1	PONOFF	IB-300	S
	Discrete Input	C10	
	Discrete Output	C20	
	Internal State	C100	

Move Single Word (MOVEW) (IB-200)

DS5	Used
HPP	N/A

Move Single Word moves (copies) a word to a memory location directly or indirectly via a pointer, either as a HEX constant, from a memory location, or indirectly through a pointer

MOVEW Parameters

- From WORD: specifies the word that will be moved to another location
- To WORD: specifies the location where the "From WORD" will be move to

N XX		0
Move	Single Word	
MOVEW		IB-200
From WORD	TA0	•
To WORD	TAO	•

Parameter	DL06 Range
From WORD	K0-FFFF; See DL06 V-memory map - Data Words
To WORDV,P	See DL06 V-memory map - Data Words

MOVEW Example

In the following example, the MOVEW instruction is used to move 16-bits of data from V2000 to V3000 when C100 turns on.

Move Double Word (MOVED) (IB-201)

DS5	Used
HPP	N/A

Move Double Word moves (copies) a double word to two consecutive memory locations directly or indirectly via a pointer, either as a double HEX constant, from a double memory location, or indirectly through a pointer to a

double memory location.

MOVED Parameters

- From DWORD: specifies the double word that will be moved to another location
- To DWORD: specifies the location where the "From DWORD" will be move to

N XX		0
Move D)ouble Word	
MOVED		IB-201
From DWORD	TAO	•
To DWORD	TAO	•

Parameter	DL06 Range
From DWORDV,P,K	K0-FFFFFFFF; See DL06 V-memory map - Data Words
To DWORDV,P	See DL06 V-memory map - Data Words

MOVED Example

In the following example, the MOVED instruction is used to move 32-bits of data from V2000 and V2001 to V3000 and V3001 when C100 turns on.

BCD to Real with Implied Decimal Point (BCDTOR) (IB-560)

DS5	Used
HPP	N/A

BCD to Real with Implied Decimal Point converts the given 4 digit WORD BCD value to a Real number, with the implied number of decimal points (K0-K4).

For example, BCDTOR K1234 with an implied number of decimal points equal to

K1, would yield R123.4

BCDTOR Parameters

- Value (WORD BCD): specifies the word or constant that will be converted to a Real number
- BCD to Real with Implied Decimal Point

 BCDTOR
 IB-560

 Value (WORD BCD)
 TA0

 Number of Decimal Points
 K0

 Result (DWORD REAL)
 V400
- Number of Decimal Points: specifies the number of implied decimal points in the Result DWORD
- Result (DWORD REAL): specifies the location where the Real number will be placed

Parameter	DL06 Range
Value (WORD BCD)V,P,K	K0-9999; See DL06 V-memory map - Data Words
Number of Decimal PointsK	К0-4
Result (DWORD REAL) V	See DL06 V-memory map - Data Words
BCDTOR Example

In the following example, the BCDTOR instruction is used to convert the 16-bit data in V2000 from a 4-digit BCD data format to a 32-bit REAL (floating point) data format and stored into V3000 and V3001.

K2 in the Number of Decimal Points implies the data will have two digits to the right of the decimal point.

	BCD to Real with Implied D	ecimal Point
1	BCDTOR	IB-560
	Value (WORD BCD)	V2000
	Number of Decimal Points	K2
	Result (DWORD REAL)	V3000 - V3001

Double BCD to Real with Implied Decimal Point (BCDTORD) (IB-562)

DS5	Used	
HPP	N/A	

Double BCD to Real with Implied Decimal Point converts the given 8 digit DWORD BCD value to a Real number, given an implied number of decimal points (K0-K8).

For example, BCDTORD K12345678 with an implied number of decimal points equal to K5, would yield R123.45678

BCDTORD Parameters

• Value (DWORD BCD): specifies the Dword or constant that will be converted to a Real number

N X X	0
Double BCD to Real with Ir	nplied Decimal Point
BCDTORD	IB-562
Value (DWORD BCD)	TA0 •
Number of Decimal Points	K0 •
Result (DWORD REAL)	V400 •

- Number of Decimal Points: specifies the number of implied decimal points in the Result DWORD
- Result (DWORD REAL): specifies the location where the Real number will be placed

Parameter	DL06 Range			
Value (DWORD BCD)V,P,K	K0-99999999; See DL06 V-memory map - Data Words			
Number of Decimal PointsK	K0-8			
Result (DWORD REAL)V	See DL06 V-memory map - Data Words			

BCDTORD Example

In the following example, the BCDTORD instruction is used to convert the 32-bit data in V2000 from an 8-digit BCD data format to a 32-bit REAL (floating point) data format and stored into V3000 and V3001.

K2 in the Number of Decimal Points implies the data will have two digits to the right of the decimal point.

	Double BCD to Real with Implied Decimal Point			
1	BCDTORD	IB-562		
	Value (DWORD BCD)	V2000 - V2001		
	Number of Decimal Points	K2		
	Result (DWORD REAL)	V3000 - V3001		

Math - BCD (MATHBCD) (IB-521)

DS5	Used	
HPP	N/A	

Math - BCD Format lets you enter complex mathematical expressions like you would in

Visual Basic, Excel, or C++ to do complex calculations, nesting parentheses up to 4 levels deep. In addition to + - * /, you can do Modulo (% aka Remainder), Bit-wise And (&) Or (|) Xor (^), and some BCD functions - Convert to BCD (BCD), Convert to Binary (BIN), BCD Complement (BCDCPL), Convert from Gray Code (GRAY), Invert Bits (INV), and BCD/HEX to Seven Segment Display (SEG).

Example: ((V2000 + V2001) / (V2003 - K100)) * GRAY(V3000 & K001F)

Every V-memory reference MUST be to a single word BCD formatted value. Intermediate results can go up to 32 bit values, but as long as the final result fits in a 16 bit BCD word, the calculation is valid. Typical example of this is scaling using multiply then divide, (V2000 * K1000) / K4095. The multiply term most likely will exceed 9999 but fits within 32 bits. The divide operation will divide 4095 into the 32-bit accumulator, yielding a result that will always fit in 16 bits.

You can reference binary V-memory values by using the BCD conversion function on a V memory location but NOT an expression. That is BCD(V2000) is okay and will convert V2000 from Binary to BCD, but BCD(V2000 + V3000) will add V2000 as BCD, to V3000 as BCD, then interpret the result as Binary and convert it to BCD - NOT GOOD.

Also, the final result is a 16 bit BCD number and so you could do BIN around the entire operation to store the result as Binary.

MATHBCD Parameters

- WORD Result: specifies the location where the BCD result of the mathematical expression will be placed (result must fit into 16 bit single V-memory location)
- Expression: specifies the mathematical expression to be executed and the result is stored in specified WORD Result. Each V-memory location used in the expression must be in BCD format.

Parameter	DL06 Range
WORD ResultV	See DL06 V-memory map - Data Words
Expression	Text

MATHBCD Example

In the following example, the MATHBCD instruction is used to calculate the math expression which multiplies the BCD value in V1200 by 1000 then divides by 4095 and loads the resulting value in V2000.

.	Math - BCD	
1	MATHBCD	IB-521
	WORD Result	V2000
	Expression (V1200 * K1000) /	K4095

Math - Binary (MATHBIN) (IB-501)

DS5	Used	
HPP	N/A	

Math - Binary Format lets you enter complex mathematical expressions like you would in Visual Basic, Excel, or C++ to do complex calculations, nesting parentheses up to 4 levels

deep. In addition to + - * /, you can do Modulo (% aka Remainder), Shift Right (>>) and Shift Left (<<), Bit-wise And (&) Or (|) Xor (^), and some binary functions -Convert to BCD (BCD), Convert to Binary (BIN), Decode Bits (DECO), Encode Bits (ENCO), Invert Bits (INV), HEX to Seven Segment Display (SEG), and Sum Bits (SUM).

Example: ((V2000 + V2001) / (V2003 - K10)) * SUM(V3000 & K001F)

Every V-memory reference MUST be to a single word binary formatted value. Intermediate results can go up to 32 bit values, but as long as the final result fits in a 16 bit binary word, the calculation is valid. Typical example of this is scaling using multiply then divide, (V2000 * K1000) / K4095. The multiply term most likely will exceed 65535 but fits within 32 bits. The divide operation will divide 4095 into the 32-bit accumulator, yielding a result that will always fit in 16 bits.

You can reference BCD V memory values by using the BIN conversion function on a Vmemory location but NOT an expression. That is, BIN(V2000) is okay and will convert V2000 from BCD to Binary, but BIN(V2000 + V3000) will add V2000 as Binary, to V3000 as Binary, then interpret the result as BCD and convert it to Binary - NOT GOOD.

Also, the final result is a 16 bit binary number and so you could do BCD around the entire operation to store the result as BCD.

MATHBIN Parameters

- WORD Result: specifies the location where the binary result of the mathematical expression will be placed (result must fit into 16 bit single V-memory location)
- Expression: specifies the mathematical expression to be executed and the result is stored in specified WORD Result. Each V-memory location used in the expression must be in binary format.

Parameter	DL06 Range		
WORD ResultV	See DL06 V-memory map - Data Words		
Expression	Text		

MATHBIN Example

In the following example, the MATHBIN instruction is used to calculate the math expression which multiplies the Binary value in V1200 by 1000 then divides by 4095 and loads the resulting value in V2000.

		-
	Math - Binary	
1	MATHBIN IB-501	
	WORD Result V2000	
	Expression (V1200 * K1000) / K4095	

43

Math - Real (MATHR) (IB-541)

DS5	Used] Math - Real Format lets you enter complex mathem	nat	cical expression	ns like you	1 would in
HPP	N/A	Visual Basic, Excel, or C++ to do complex calculation	on	s, nesting pai	entheses u	p to 4 levels
		deep. In addition to + - * /, you can do Bit-	\checkmark	সিম্ব		•
		wise And (&) Or () Xor (^), and many Real		Ma	th - Real	
		functions - Arc Cosine (ACOSR), Arc Sine	м	ATHR		IB-541
		(ASINR), Arc Tangent (ATANR), Cosine		DWORD Result	TAO	•
		(COSR), Convert Radians to Degrees		Expression		
		(DEGR), Invert Bits (INV), Convert Degrees				• •
		to Radians (RADR), HEX to Seven Segment				
		Display (SEG), Sine (SINR), Square Root				
		(SQRTR), Tangent (TANR).				
		Example: ((V2000 + V2002) / (V2004 -				\sim

R2.5) * SINR(RADR(V3000 / R10.0))

Every V-memory reference MUST be able to fit into a double word Real formatted value.

MATHR Parameters

- DWORD Result: specifies the location where the Real result of the mathematical expression will be placed (result must fit into a double word Real formatted location)
- Expression: specifies the mathematical expression to be executed and the result is stored in specified DWORD Result location. Each V-memory location used in the expression must be in Real format.

Parameter	DL06 Range
DWORD Result	See DL06 V-memory map - Data Words
Expression	Text

MATHR Example

In the following example, the MATHR instruction is used to calculate the math expression which multiplies the REAL (floating point) value in V1200 by 10.5 then divides by 2.7 and loads the resulting 32-bit value in V2000 and V2001.

	Math - Ri	eal
1	MATHR	IB-541
	DWORD Result	V2000 - V2001
	Expression (V1200	* R10.5) / R2.7

Real to BCD with Implied Decimal Point and Rounding (RTOBCD) (IB-561)

DS5	Used	
HPP	N/A	-

Real to BCD with Implied Decimal Point and Rounding converts the absolute value of the given Real number to a 4 digit BCD number, compensating for an implied number of decimal points (K0-K4) and performs rounding.

For example, RTOBCD R56.74 with an implied number of decimal points equal to K1, would yield 567 BCD. If the implied number of decimal points was 0, then the function would yield 57 BCD (note that it rounded up).

If the Real number is negative, the Result will equal its positive, absolute value.

N X N	0
Real to BCD w/Implied Deci	mal Pt and Rounding
RTOBCD	IB-561
Value (DWORD Real)	TA0 •
Number of Decimal Points	K0 •
Result (WORD BCD)	V400 •

RTOBCD Parameters

- Value (DWORD Real): specifies the Real Dword location or number that will be converted and rounded to a BCD number with decimal points
- Number of Decimal Points: specifies the number of implied decimal points in the Result WORD
- Result (WORD BCD): specifies the location where the rounded/implied decimal points BCD value will be placed

Parameter	DL06 Range
Value (DWORD Real)V,P,R	R ; See DL06 V-memory map - Data Words
Number of Decimal PointsK	К0-4
Result (WORD BCD)V	See DL06 V-memory map - Data Words

RTOBCD Example

In the following example, the RTOBCD instruction is used to convert the 32-bit REAL (floating point) data format in V3000 and V3001 to the 4-digit BCD data format and stored in V2000.

K2 in the Number of Decimal Points implies the data will have two implied decimal points.

1	Real to BCD w/Implied Decimal F RTOBCD Value (DWORD Real) Number of Decimal Points Result (WORD BCD)	rt and Rounding IB-561 V3000 - V3001 K2 V2000
]

Real to Double BCD with Implied Decimal Point and Rounding (RTOBCDD) (IB-563)

DS5	Used
HPP	N/A

Real to Double BCD with Implied Decimal Point and Rounding converts the absolute value of the given Real number to an 8 digit DWORD BCD number, compensating for an implied number of decimal points (K0-K8) and performs rounding.

For example, RTOBCDD R38156.74 with an implied number of decimal points equal to K1, would yield 381567 BCD. If the implied number of decimal points was 0, then the function would yield 38157 BCD (note that it rounded up).

✓X [®]	٥
Real to Double BCD w/Implied D	Decimal Pt and Rounding
RTOBCDD	IB-563
Value (DWORD Real)	TA0 •
Number of Decimal Points	K0 •
Result (DWORD BCD)	V400 •

If the Real number is negative, the Result will equal its positive, absolute value.

RTOBCDD Parameters

- Value (DWORD Real): specifies the Dword Real number that will be converted and rounded to a BCD number with decimal points
- Number of Decimal Points: specifies the number of implied decimal points in the Result DWORD
- Result (DWORD BCD): specifies the location where the rounded/implied decimal points DWORD BCD value will be placed

Parameter	DL06 Range
Value (DWORD Real)V,P,R	R ; See DL06 V-memory map - Data Words
Number of Decimal PointsK	К0-8
Result (DWORD BCD) V	See DL06 V-memory map - Data Words

RTOBCDD Example

ı

In the following example, the RTOBCDD instruction is used to convert the 32-bit REAL (floating point) data format in V3000 and V3001 to the 8-digit BCD data format and stored in V2000 and V2001.

K2 in the Number of Decimal Points implies the data will have two implied decimal points.

	Real to Double BCD w/Implied Decima	al Pt and Rounding
1	RTOBCDD	IB-563
	Value (DWORD Real)	V3000 - V3001
	Number of Decimal Points	K2
	Result (DWORD BCD)	V2000 - V2001

Square BCD (SQUARE) (IB-523)

DS5	Used	Sq
HPP	N/A	D

Square BCD squares the given 4-digit WORD BCD number and writes it in as an 8-digit \overrightarrow{A} DWORD BCD result.

SQUARE Parameters

- Value (WORD BCD): specifies the BCD Word or constant that will be squared
- Result (DWORD BCD): specifies the location where the squared DWORD BCD value will be placed

N N N N	0
Square	BCD
SQUARE	IB-523
Value (WORD BCD)	TA0 •
Result (DWORD BCD)	V400 •

Parameter	DL06 Range
Value (WORD BCD)V,P,K	K0-9999 ; See DL06 V-memory map - Data Words
Result (DWORD BCD) V	See DL06 V-memory map - Data Words

SQUARE Example

In the following example, the SQUARE instruction is used to square the 4-digit BCD value in V2000 and store the 8-digit double word BCD result in V3000 and V3001

Square Binary (SQUAREB) (IB-503)

DS5 Used So HPP N/A D

Ged Square Binary squares the given 16-bit WORD Binary number and writes it as a 32-bit DWORD Binary result.

SQUAREB Parameters

- Value (WORD Binary): specifies the binary Word or constant that will be squared
- Result (DWORD Binary): specifies the location where the squared DWORD binary value will be placed

N XX	0
Square	Binary
SQUAREB	IB-503
Value (WORD binary)	TA0 •
Result (DWORD binary)	V400 •

Parameter	DL06 Range	
Value (WORD Binary)V,P,K	K0-65535; See DL06 V-memory map - Data Words	
Result (DWORD Binary)V	See DL06 V-memory map - Data Words	

SQUAREB Example

In the following example, the SQUAREB instruction is used to square the single word Binary value in V2000 and store the 8-digit double word Binary result in V3000 and V3001.

	Square Binary	<i>,</i>
ŀ	SQUAREB	IB-503
	Value (WORD binary)	V2000
	Result (DWORD binary)	V3000 - V3001
I		

Square Real (SQUARER) (IB-543)

DS5	Used	
HPP	N/A	

Square Real squares the given REAL DWORD number and writes it to a REAL DWORD result.

SQUARER Parameters

- Value (REAL DWORD): specifies the Real DWORD location or number that will be squared
- Result (REAL DWORD): specifies the location where the squared Real DWORD value will be placed

N N N N N N N N N N N N N N	٥
Square	Real
SQUARER	IB-543
Value (REAL DWORD)	TA0 •
Result (REAL DWORD)	V400 •

Parameter	DL06 Range
Value (REAL DWORD)V,P,R	R ; See DL06 V-memory map - Data Words
Result (REAL DWORD) V	See DL06 V-memory map - Data Words

SQUARER Example

In the following example, the SQUARER instruction is used to square the 32-bit floating point REAL value in V2000 and V2001 and store the REAL value result in V3000 and V3001.

	Square Real	
1	SQUARER	IB-543
	Value (REAL DWORD)	V2000 - V2001
	Result (REAL DWORD)	V3000 - V3001

Sum BCD Numbers (SUMBCD) (IB-522)

DS5	Used
HPP	N/A

Sum BCD Numbers sums up a list of consecutive 4-digit WORD BCD numbers into an 8digit DWORD BCD result.

You specify the group's starting and ending V- memory addresses (inclusive). When enabled, this instruction will add up all the numbers in the group (so you may want to place a differential contact driving the enable).

SUMBCD could be used as the first part of calculating an average.

✓X [∞]	٥
Sum BCD N	Numbers
SUMBCD	IB-522
Start Address	V400 •
End Addr (inclusive)	V400 •
Result (DWORD BCD)	V400 •

SUMBCD Parameters

- Start Address: specifies the starting address of a block of V-memory location values to be added together (BCD)
- End Addr (inclusive): specifies the ending address of a block of V-memory location values to be added together (BCD)
- Result (DWORD BCD): specifies the location where the sum of the block of V-memory BCD values will be placed

Parameter	DL06 Range
Start AddressV	See DL06 V-memory map - Data Words
End Address (inclusive)V	See DL06 V-memory map - Data Words
Result (DWORD BCD) V	See DL06 V-memory map - Data Words

SUMBCD Example

In the following example, the SUMBCD instruction is used to total the sum of all BCD values in words V2000 thru V2007 and store the resulting 8-digit double word BCD value in V3000 and V3001.

	Sum BCD Numbers	
	SUMBCD	IB-522
	Start Address	V2000
	End Addr (inclusive)	V2007
	Result (DWORD BCD)	V3000 - V3001

S

Sum Binary Numbers (SUMBIN) (IB-502)

DS5	Used
HPP	N/A

Sum Binary Numbers sums up a list of consecutive 16-bit WORD Binary numbers into a 32bit DWORD binary result.

You specify the group's starting and ending V- memory addresses (inclusive). When enabled, this instruction will add up all the numbers in the group (so you may want to place a differential contact driving the enable).

SUMBIN could be used as the first part of calculating an average.

✓X 湾		0
Sum Binary	Numbers	
SUMBIN		IB-502
Start Address	V400	•
End Addr (inclusive)	V400	•
Result (DWORD binary)	V400	•

SUMBIN Parameters

- Start Address: specifies the starting address of a block of V-memory location values to be added together (Binary)
- End Addr (inclusive): specifies the ending address of a block of V-memory location values to be added together (Binary)
- Result (DWORD Binary): specifies the location where the sum of the block of V-memory binary values will be placed

Parameter	DL06 Range
Start AddressV	See DL06 V-memory map - Data Words
End Address (inclusive)V	See DL06 V-memory map - Data Words
Result (DWORD Binary)V	See DL06 V-memory map - Data Words

SUMBIN Example

In the following example, the SUMBIN instruction is used to total the sum of all Binary values in words V2000 thru V2007 and store the resulting 8-digit double word Binary value in V3000 and V3001.

Sum Real Numbers (SUMR) (IB-542)

DS5	Used	Su
HPP	N/A	D

Sum Real Numbers sums up a list of consecutive REAL DWORD numbers into a REAL DWORD result.

You specify the group's starting and ending V- memory addresses (inclusive).

Remember that Real numbers are DWORDs and occupy 2 words of V memory each, so the number of Real values summed up is equal to half the number of memory locations. Note that the End Address can be EITHER word of the 2 word ending address, for example, if you wanted to add the 4 Real numbers stored in V2000 thru V2007

N N		0
Sum Real Nu	mbers	
SUMR		IB-542
Start Address (DWORD)	V400	•
End Addr (inclusive DWORD)	V400	•
Result (DWORD)	V400	•

(V2000, V2002, V2004, and V2006), you can specify V2006 OR V2007 for the ending address and you will get the same result.

When enabled, this instruction will add up all the numbers in the group (so you may want to place a differential contact driving the enable).

SUMR could be used as the first part of calculating an average.

SUMR Parameters

- Start Address (DWORD): specifies the starting address of a block of V-memory location values to be added together (Real)
- End Addr (inclusive) (DWORD): specifies the ending address of a block of V-memory location values to be added together (Real)
- Result (DWORD): specifies the location where the sum of the block of V-memory Real values will be placed

Parameter	DL06 Range
Start Address (inclusive DWORD)V	See DL06 V-memory map - Data Words
End Address (inclusive DWORD)V	See DL06 V-memory map - Data Words
Result (DWORD)	See DL06 V-memory map - Data Words

60

SUMR Example

In the following example, the SUMR instruction is used to total the sum of all floating point REAL number values in words V2000 thru V2007 and store the resulting 32-bit floating point REAL number value in V3000 and V3001.

	Sum Real Numbers	
	SUMR	IB-542
	Start Address (DWORD)	V2000 - V2001
	End Addr (inclusive DWORD)	V2007
	Result (DWORD)	V3000 - V3001

ECOM100 Configuration (ECOM100) (IB-710)

DS5	Used
HPP	N/A

ECOM100 Configuration defines all the common information for one specific ECOM100 module which is used by the other ECOM100 IBoxes; for example, ECRX - ECOM100

Network Read, ECEMAIL - ECOM100 Send EMail, ECIPSUP - ECOM100 IP

Setup, etc.

You MUST have the ECOM100 Configuration IBox at the top of your ladder/stage program with any other configuration IBoxes. The Message Buffer parameter specifies the starting address of a 65 WORD buffer. This is 101 Octal addresses (e.g. V1400 thru V1500).

N N		0
ECOM100) Config	
ECOM100	IB-71	10
ECOM100#	K0	•
Slot	K1	•
Status	V400	•
Workspace	V400	•
Msg Buffer (65 WORDs)	V400	•

If you have more than one ECOM100 in

your PLC, you must have a different ECOM100 Configuration IBox for EACH ECOM100 module in your system that utilizes any ECOM IBox instructions.

The Workspace and Status parameters and the entire Message Buffer are internal, private registers used by the ECOM100 Configuration IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

In order for MOST ECOM100 IBoxes to function, you must turn ON dip switch 7 on the ECOM100 circuit board. You can keep dip switch 7 off if you are ONLY using ECOM100 Network Read and Write IBoxes (ECRX, ECWX).

ECOM100 Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Slot: specifies the option slot the module occupies
- Status: specifies a V-memory location that will be used by the instruction
- Workspace: specifies a V-memory location that will be used by the instruction
- Msg Buffer: specifies the starting address of a 65 word buffer that will be used by the module for configuration

Parameter	DL06 Range
ECOM100#K	K0-255
SlotK	K1-4
StatusV	See DL06 V-memory map - Data Words
WorkspaceV	See DL06 V-memory map - Data Words
Msg Buffer (65 words used) V	See DL06 V-memory map - Data Words

ECOM100 Example

The ECOM100 Config IBox coordinates all of the interaction with other ECOM100 based IBoxes (ECxxxx). You must have an ECOM100 Config IBox for each ECOM100 module in your system. Configuration IBoxes must be at the top of your program and must execute every scan.

This IBox defines ECOM100# K0 to be in slot 3. Any ECOM100 IBoxes that need to reference this specific module (such as ECEMAIL, ECRX, ...) would enter K0 for their ECOM100# parameter.

The Status register is for reporting any completion or error information to other ECOM100 IBoxes. This V memory register must not be used anywhere else in the entire program.

The Workspace register is used to maintain state information about the ECOM100, along with proper sharing and interlocking with the other ECOM100 IBoxes in the program. This V memory register must not be used anywhere else in the entire program.

The Message Buffer of 65 words (130 bytes) is a common pool of memory that is used by other ECOM100 IBoxes (such as ECEMAIL). This way, you can have a bunch of ECEMAIL IBoxes, but only need 1 common buffer for generating and sending each EMail. These V memory registers must not be used anywhere else in your entire program.

	ECOM100 Cor	ıfig
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K3
	Status	V1501
	Workspace	V1502
	Msg Buffer (65 WORDs)	V1400 - V1500

ECOM100 Disable DHCP (ECDHCPD) (IB-736)

DS5	Used	
HPP	N/A	

ECOM100 Disable DHCP will setup the ECOM100 to use its internal TCP/IP settings on a leading edge transition to the IBox. To configure the ECOM100's TCP/IP settings manually,

use the NetEdit3 utility, or you can do it programmatically from your PLC program using the ECOM100 IP Setup (ECIPSUP), or the individual ECOM100 IBoxes: ECOM Write IP Address (ECWRIP), ECOM Write Gateway Address (ECWRGWA), and ECOM100 Write Subnet Mask (ECWRSNM).

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and

NX	0		
ECOM100 Disable DHCP			
ECDHCPD	IB-736		
ECOM100#	K0 •		
Workspace	V400 •		
Success	C0 •		
Error	C0 •		
Error Code	V400 •		

MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The "Disable DHCP" setting is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE, on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECDHCPD Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written

Parameter	DL06 Range	
ECOM100#K	K0-255	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B See DL06 V-memory map		
Error Code	See DL06 V-memory map - Data Words	

ECDHCPD Example

I.

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Conf	ig
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, disable DHCP in the ECOM100. DHCP is the same protocol used by PCs for using a DHCP Server to automatically assign the ECOM100's IP Address, Gateway Address, and Subnet Mask. Typically disabling DHCP is done by assigning a hardcoded IP Address either in NetEdit or using one of the ECOM100 IP Setup IBoxes, but this IBox allows you to disable DHCP in the ECOM100 using your ladder program. The ECDHCPD is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to disable DHCP will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON. If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

ECOM100 Enable DHCP (ECDHCPE) (IB-735)

DS5	Used
HPP	N/A

ECOM100 Enable DHCP will tell the ECOM100 to obtain its TCP/IP setup from a DHCP Server on a leading edge transition to the IBox.

The IBox will be successful once the ECOM100 has received its TCP/IP settings from the DHCP server. Since it is possible for the DHCP server to be unavailable, a Timeout parameter is provided so that the IBox can complete, but with an Error (Error Code = 1004 decimal).

See also the ECOM100 IP Setup (ECIPSUP) IBox 717 to directly setup ALL of the TCP/IP parameters in a single instruction - IP Address, Subnet Mask, and Gateway Address.

<u>v</u> x¤	٥			
ECOM100 Enable DHCP				
ECDHCPE	IB-735			
ECOM100#	K0 •			
Timeout(sec.)	K5 •			
Workspace	V400 •			
Success	C0 •			
Error	C0 •			
Error Code	V400 •			

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The "Enable DHCP" setting is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE, on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECDHCPE Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Timeout(sec): specifies a timeout period so that the instruction may have time to complete
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written

Parameter	DL06 Range	
ECOM100#K	K0-255	
Timeout (sec)K	K5-127	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	
Error Code	See DL06 V-memory map - Data Words	

ECDHCPE Example

ı

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, enable DHCP in the ECOM100. DHCP is the same protocol used by PCs for using a DHCP Server to automatically assign the ECOM100's IP Address, Gateway Address, and Subnet Mask. Typically this is done using NetEdit, but this IBox allows you to enable DHCP in the ECOM100 using your ladder program. The ECDHCPE is leading edge triggered, not power-flow driven (similar to a counter input leg). The commands to enable DHCP will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON. The ECDHCPE does more than just set the bit to enable DHCP in the ECOM100, but it then polls the ECOM100 once every second to see if the ECOM100 has found a DHCP server and has a valid IP Address. Therefore, a timeout parameter is needed in case the ECOM100 cannot find a DHCP server. If a timeout does occur, the Error bit will turn on and the error code will be 1005 decimal. The Success bit will turn on only if the ECOM100 finds a DHCP Server and is assigned a valid IP Address. If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

	_FirstScan	ECOM100 Enabl	e DHCP
~	SPO	ECDHCPE	IB-735
2			
		ECOM100#	K0
		Timeout(sec.)	K10
		Workspace	V503
		Success	C100
		Error	C101
		Error Code	V2000

ECOM100 Query DHCP Setting (ECDHCPQ) (IB-734)

DS5	Used	
HPP	N/A	

ECOM100 Query DHCP Setting will determine if DHCP is enabled in the ECOM100 on a leading edge transition to the IBox. The DHCP Enabled bit parameter will be ON if DHCP is enabled, OFF if disabled.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

✓X [∞]	0
ECOM100 Q	uery DHCP Setting
ECDHCPQ	IB-734
ECOM100#	K0 •
Workspace	V400 •
Success	C0 •
Error	C0 •
DHCP Enabled	C0 •

ECDHCPQ Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- DHCP Enabled: specifies a bit that will turn on if the ECOM100's DHCP is enabled or remain off if disabled after instruction query, be sure to check the state of the Success/Error bit state along with DHCP Enabled bit state to confirm a successful module query

Parameter	DL06 Range	
ECOM100#K	K0-255	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	
DHCP Enabled X,Y,C,GX,GY,B	See DL06 V-memory map	

68

ECDHCPQ Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	EC	ECOM100 Config	
1	ECOM100	IB-710	
	ECOM100#	KO	
	Slot	K1	
	Status	∨400	
	Workspace	V401	
	Msg Buffer (65	WORDs) V402 - V502	

Rung 2: On the 2nd scan, read whether DHCP is enabled or disabled in the ECOM100 and store it in C5. DHCP is the same protocol used by PCs for using a DHCP Server to automatically assign the ECOM100's IP Address, Gateway Address, and Subnet Mask. The ECDHCPQ is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to read (Query) whether DHCP is enabled or not will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON. If successful, turn on C100. If there is a failure, turn on C101.

2	_FirstScan	ECOM100 Query DH	CP Setting
	SP0	ECDHCPQ	IB-734
2		ECOM100 # Workspace Success Error DHCP Enabled	K0 V503 C100 C101 C5

ECOM100 Send E-mail (ECEMAIL) (IB-711)

DS5 Used HPP N/A

ECOM100 Send EMail, on a leading edge transition, will behave as an EMail client and send an SMTP request to your SMTP Server to send the EMail message to the EMail addresses in

the To: field and also to those listed in the Cc: list hard coded in the ECOM100. It will send the SMTP request based on the specified ECOM100#, which corresponds to a specific unique ECOM100 Configuration (ECOM100) at the top of your program.

The Body: field supports what the PRINT and VPRINT instructions support for text and embedded variables, allowing you to embed real-time data in your EMail (e.g. "V2000 = "V2000:B).

N X			۲	
ECOM100 Send EMail				
ECEMAIL			IB-711	
ECOM10	0#	K0	•	
Workspa	ce	V400	•	
Success		CO	•	
Error		CO	•	
Error Coo	ie	V400	•	
To [•	
Subject [•	
Body				
			• ^	
			~	

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the request is complete. If there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), an SMPT protocol error (between 100 and 999), or a PLC logic error (greater than 1000).

Since the ECOM100 is only an EMail Client and requires access to an SMTP Server, you MUST have the SMTP parameters configured properly in the ECOM100 via the ECOM100's Home Page and/or the EMail Setup instruction (ECEMSUP). To get to the ECOM100's Home Page, use your favorite Internet browser and browse to the ECOM100's IP Address, e.g. http://192.168.12.86

You are limited to approximately 100 characters of message data for the entire instruction, including the To: Subject: and Body: fields. To save space, the ECOM100 supports a hard coded list of EMail addresses for the Carbon Copy field (cc:) so that you can configure those IN the ECOM100, and keep the To: field small (or even empty), to leave more room for the Subject: and Body: fields.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECEMAIL Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- To: specifies an E-mail address that the message will be sent to
- Subject: subject of the e-mail message
- Body: supports what the PRINT and VPRINT instructions support for text and embedded variables, allowing you to embed real-time data in the EMail message

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error Code	See DL06 V-memory map
То:	Text
Subject:	Text
Body:	See PRINT and VPRINT instructions

ECEMAIL Example

T

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Con	fig
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

(example continued on next page)

ECEMAIL Example (con't)

Rung 2: When a machine goes down, send an email to Joe in maintenance and to the VP over production showing what machine is down along with the date/time stamp of when it went down.

The ECEMAIL is leading edge triggered, not power-flow driven (similar to a counter input leg). An email will be sent whenever the power flow into the IBox goes from OFF to ON. This helps prevent self inflicted spamming.

If the EMail is sent, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the SMTP error code or other possible error codes.

		ECOM100 Ser	ECOM100 Send EMail	
	Machine Down	ECEMAIL	IB-711	
2				
2				
		ECOM100#	KO	
		Workspace	V503	
		Success	C100	
		Error	C101	
		Error Code	V2000	
		To joe@acme.co	im, vp@acme.com	
		Subject	Machine Offline	
		Body "Machine #" V5010	Body "Machine #" V5010:B "went offline	
		at"_time:24" on "_date	eus	

ı
ECOM100 Restore Default E-mail Setup (ECEMRDS) (IB-713)

DS5 HPP N/A

Used ECOM100 Restore Default EMail Setup, on a leading edge transition, will restore the original EMail Setup data stored in the ECOM100 back to the working copy based on the

specified ECOM100#, which corresponds to a specific unique ECOM100 Configuration (ECOM100) at the top of your program.

When the ECOM100 is first powered up, it copies the EMail setup data stored in ROM to the working copy in RAM. You can then modify this working copy from your program using the ECOM100 EMail Setup (ECEMSUP) IBox. After modifying the working copy, you can later restore the

く X 刻	0
ECOM100 Resto	re Default EMail Setup
ECEMRDS	IB-713
ECOM100#	ко •
Workspace	V400 •
Success	C0 •
Error	C0 •
Error Code	V400 •

original setup data via your program by using this IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECEMRDS Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error Code	See DL06 V-memory map - Data Words

ECEMRDS Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: Whenever an EStop is pushed, ensure that president of the company gets copies of all EMails being sent.

The ECOM100 EMail Setup IBox allows you to set/change the SMTP EMail settings stored in the ECOM100.

		ECOM100 EMail Setup	ECOM100 EMail Setup	
	EStop Pushed	ECEMSUP IB-7	12	
2				
2		ECOM100 #	νn	
		ECOMITOD#	0.0	
		vvorkspace vs	03	
		Success C1	00	
		Error C1	01	
		Error Code V20	00	
		SMTP Server IP Addr		
		Sender Name		
		Sender Email		
		Port Number		
		Timeout (sec.)		
		Cc president@acme.co	m	

(example continued on next page)

I.

I

I

ECEMRDS Example (con't)

Rung 3: Once the EStop is pulled out, take the president off the cc: list by restoring the default EMail setup in the ECOM100.

The ECEMRDS is leading edge triggered, not power-flow driven (similar to a counter input leg). The ROM based EMail configuration stored in the ECOM100 will be copied over the "working copy" whenever the power flow into the IBox goes from OFF to ON (the working copy can be changed by using the ECEMSUP IBox).

If successful, turn on C102. If there is a failure, turn on C103. If it fails, you can look at V2001 for the specific error code.

ECOM100 E-mail Setup (ECEMSUP) (IB-712)

DS5 Used I HPP N/A I

ECOM100 EMail Setup, on a leading edge transition, will modify the working copy of the EMail setup currently in the ECOM100 based on the specified ECOM100#, which

corresponds to a specific unique ECOM100 Configuration (ECOM100) at the top of your program.

You may pick and choose any or all fields to be modified using this instruction. Note that these changes are cumulative: if you execute multiple ECOM100 EMail Setup IBoxes, then all of the changes are made in the order they are executed. Also note that you can restore the original ECOM100 EMail Setup that is stored in the ECOM100 to the

× X 刻	۲
ECOM10	0 EMail Setup
ECEMSUP	IB-712
ECOM100 #	K0 •
Workspace	V400 ·
Success	C0 •
Error	C0 •
Error Code	V400 ·
🔲 SMTP Server IP Addr	
🔲 Sender Name	
🔲 Sender Email	
Port Number	K25
Timeout (sec.)	K10
Cc	

working copy by using the ECOM100 Restore Default EMail Setup (ECEMRDS) IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

You are limited to approximately 100 characters/bytes of setup data for the entire instruction. So if needed, you could divide the entire setup across multiple ECEMSUP IBoxes on a fieldby-field basis, for example do the Carbon Copy (cc:) field in one ECEMSUP IBox and the remaining setup parameters in another.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECEMSUP Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- SMTP Server IP Addr: optional parameter that specifies the IP Address of the SMTP Server on the ECOM100's network
- Sender Name: optional parameter that specifies the sender name that will appear in the "From:" field to those who receive the e-mail
- Sender EMail: optional parameter that specifies the sender EMail address that will appear in the "From:" field to those who receive the e-mail

76

ECEMSUP Parameters (con't)

- Port Number: optional parameter that specifies the TCP/IP Port Number to send SMTP requests; usually this does not to be configured (see your network administrator for information on this setting)
- Timeout (sec): optional parameter that specifies the number of seconds to wait for the SMTP Server to send the EMail to all the recipients
- Cc: optional parameter that specifies a list of "carbon copy" Email addresses to send all EMails to

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error Code	See DL06 V-memory map - Data Words

ECEMSUP Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	Γ	ECOM100 Config	
1	E	ECOM100	IB-710
		ECOM100#	K0
		Slot	K1
		Status	V400
		Workspace	V401
		Msg Buffer (65 WORDs)	V402 - V502
	L		

(example continued on next page)

I.

ECEMSUP Example (con't)

ī

Rung 2: Whenever an EStop is pushed, ensure that president of the company gets copies of all EMails being sent. The ECOM100 EMail Setup IBox allows you to set/change the SMTP EMail settings stored in the ECOM100. The ECEMSUP is leading edge triggered, not power-flow driven (similar to a counter input leg). At power-up, the ROM based EMail configuration stored in the ECOM100 is copied to a RAM based "working copy". You can change this working copy by using the ECEMSUP IBox. To restore the original ROM based configuration, use the Restore Default EMail Setup ECEMRDS IBox.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

Rung 3: Once the EStop is pulled out, take the president off the cc: list by restoring the default EMail setup in the ECOM100.

3	EStop Pushed	ECOM100 Restore Defaul	t EMail Setup
	C11	ECEMRDS	IB-713
0		ECOM100 # Workspace Success Error Error Code	K0 V504 C102 C103 V2001

ECOM100 IP Setup (ECIPSUP) (IB-717)

Used ECOM100 IP Setup will configure the three TCP/IP parameters in the ECOM100: IP N/A Address, Subnet Mask, and Gateway Address, on a leading edge transition to the IBox. The

ECOM100 is specified by the ECOM100#, which corresponds to a specific unique ECOM100 Configuration (ECOM100) IBox at the top of your program.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If

<u>vx</u> »	۲
ECOM	1100 IP Setup
ECIPSUP	IB-717
ECOM100#	K0 •
Workspace	V400 •
Success	C0 •
Error	C0 •
Error Code	V400 •
IP Address	0.0.0.0
Subnet Mask	0.0.0.0
Gateway Address	0.0.0.0

there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

This setup data is stored in Flash-ROM in the ECOM100 and will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECIPSUP Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- IP Address: specifies the module's IP Address
- Subnet Mask: specifies the Subnet Mask for the module to use
- Gateway Address: specifies the Gateway Address for the module to use

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error Code	See DL06 V-memory map - Data Words
IP Address IP Address	0.0.0.1. to 255.255.255.254
Subnet Mask Address IP Address Mask	0.0.0.1. to 255.255.255.254
Gateway Address IP Address	0.0.0.1. to 255.255.255.254

DS5

HPP

ECIPSUP Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, configure all of the TCP/IP parameters in the ECOM100:

IP Address:	192.168.	12.10)()
Subnet Mask:	255.255.	0.	0

Gateway Address: 192.168. 0. 1

T

The ECIPSUP is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to write the TCP/IP configuration parameters will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

	_FirstScan	ECOM100 IP	Setup
2		ECIPSUP	IB-717
2			
		ECOM100#	K0
		Workspace	V503
		Success	C100
		Error	C101
		Error Code	V2000
		IP Address	192.168.12.100
		Subnet Mask	255.255.0.0
		Gateway Address	192.168.0.1

ECOM100 Read Description (ECRDDES) (IB-726)

DS5	Used	ECOM100 Read Description will read the ECOM100's Description field up to the number
HPP	N/A	of specified characters on a leading edge transition to the IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

√X¤		0
ECOM100) Read Description	
ECRDDES	IB	-726
ECOM100#	K0	•
Workspace	V400	•
Success	CO	•
Error	CO	•
Description	V400	•
Num Chars	K1	•

ECRDDES Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Description: specifies the starting buffer location where the ECOM100's Module Name will be placed
- Num Char: specifies the number of characters (bytes) to read from the ECOM100's Description field

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
DescriptionV	See DL06 V-memory map - Data Words
Num Chars	K1-128

ECRDDES Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

500M400.0-+6	
ECOM100	IB-710
ECOM100 #	K0
Slot	K1
Status	V400
Workspace	V401
Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, read the Module Description of the ECOM100 and store it in V3000 thru V3007 (16 characters). This text can be displayed by an HMI.

The ECRDDES is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to read the module description will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101.

ECOM100 Read Gateway Address (ECRDGWA) (IB-730)

DS5	Used	
HPP	N/A	1

ECOM100 Read Gateway Address will read the 4 parts of the Gateway IP address and store them in 4 consecutive V Memory locations in decimal format, on a leading edge transition to the IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

× ×	0
ECOM100 Read Gat	eway Address
ECRDGWA	IB-730
ECOM100#	K0 •
Workspace	V400 •
Success	C0 •
Error	C0 •
Gateway IP Addr(4 words)	V400 •

ECRDGWA Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Gateway IP Addr: specifies the starting address where the ECOM100's Gateway Address will be placed in 4 consecutive V-memory locations

Parameter	DL06 Range	
ECOM100#K	K0-255	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	
Gateway IP Address (4 Words)V	See DL06 V-memory map - Data Words	

ECRDGWA Example

I

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Conf	īg
1	ECOM100	- IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, read the Gateway Address of the ECOM100 and store it in V3000 thru V3003 (4 decimal numbers). The ECOM100's Gateway Address could be displayed by an HMI.

The ECRDGWA is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to read the Gateway Address will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101.

	_FirstScan	ECOM100 Read Gatew	ECOM100 Read Gateway Address	
2		ECRDGWA	IB-730	
2		ECOM100#	КO	
		Workspace	V503	
		Success	C100	
		Error	C101	
		Gateway IP Addr(4 words)	V3000 - V3003	

ECOM100 Read IP Address (ECRDIP) (IB-722)

DS5	Used	
HPP	N/A	

 $\frac{1}{2}$ ECOM100 Read IP Address will read the 4 parts of the IP address and store them in 4 consecutive V Memory locations in decimal format, on a leading edge transition to the IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

~ × 湾		0
ECOM100 Rea	ad IP Address	
ECRDIP		IB-722
ECOM100#	K0	•
Workspace	V400	•
Success	CO	•
Error	CO	•
IP Address (4 words)	V400	•

ECRDIP Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- IP Address: specifies the starting address where the ECOM100's IP Address will be placed in 4 consecutive V-memory locations

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
IP Address (4 Words) V	See DL06 V-memory map - Data Words

86

ECRDIP Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	
1	ECOM100	IB-710
	ECOM100#	KO
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, read the IP Address of the ECOM100 and store it in V3000 thru V3003 (4 decimal numbers). The ECOM100's IP Address could be displayed by an HMI.

The ECRDIP is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to read the IP Address will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101.

ECOM100 Read Module ID (ECRDMID) (IB-720)

DS5	Used
HPP	N/A

ECOM100 Read Module ID will read the binary (decimal) WORD sized Module ID on a leading edge transition to the IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

✓X [×]	0	
ECOM100 Read Module ID		
ECRDMID	IB-720	
ECOM100#	K0 •	
Workspace	V400 •	
Success	C0 •	
Error	C0 •	
Module ID	V400 •	

ECRDMID Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Module ID: specifies the location where the ECOM100's Module ID (decimal) will be placed

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Module ID	See DL06 V-memory map - Data Words

88

ECRDMID Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

Rung 2: On the 2nd scan, read the Module ID of the ECOM100 and store it in V2000.

The ECRDMID is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to read the module ID will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101.

ECOM100 Read Module Name (ECRDNAM) (IB-724)

DS5	Used
HPP	N/A

 $\frac{1}{100}$ ECOM100 Read Name will read the Module Name up to the number of specified characters on a leading edge transition to the IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

•
ł
]

ECRDNAM Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Module Name: specifies the starting buffer location where the ECOM100's Module Name will be placed
- Num Chars: specifies the number of characters (bytes) to read from the ECOM100's Name field

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Module NameV	See DL06 V-memory map - Data Words
Num Chars	K1-128

90

ECRDNAM Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	a
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, read the Module Name of the ECOM100 and store it in V3000 thru V3003 (8 characters). This text can be displayed by an HMI.

The ECRDNAM is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to read the module name will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101.

ECOM100 Read Subnet Mask (ECRDSNM) (IB-732)

DS5	Used	
HPP	N/A	•

ECOM100 Read Subnet Mask will read the 4 parts of the Subnet Mask and store them in 4 consecutive V Memory locations in decimal format, on a leading edge transition to the IBox.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

✓X [∞]		0
ECOM100 Rea	d Subnet Mask	
ECRDSNM		IB-732
ECOM100#	K0	•
Workspace	V400	•
Success	CO	•
Error	CO	•
Subnet Mask (4 words)	V400	•

ECRDSNM Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Subnet Mask: specifies the starting address where the ECOM100's Subnet Mask will be placed in 4 consecutive V-memory locations

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Subnet Mask (4 Words)V	See DL06 V-memory map - Data Words

ECRDSNM Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, read the Subnet Mask of the ECOM100 and store it in V3000 thru V3003 (4 decimal numbers). The ECOM100's Subnet Mask could be displayed by an HMI.

The ECRDSNM is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to read the Subnet Mask will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101.

ECOM100 Write Description (ECWRDES) (IB-727)

Used ECOM100 Write Description will write the given Description to the ECOM100 module on a leading edge transition to the IBox. If you use a dollar sign (\$) or double quote ("), use the

PRINT/VPRINT escape sequence of TWO dollar signs (\$\$) for a single dollar sign or dollar sign-double quote (\$") for a double quote character.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If

<u>v n x</u>		0
ECOM	100 Write Descr	iption
ECWRDES		IB-727
ECOM100#	K0	•
Workspace	V400	•
Success	CO	•
Error	CO	•
Error Code	V400	•
Description [•

there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The Description is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECWRDES Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- Description: specifies the Description that will be written to the module

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error CodeV	See DL06 V-memory map - Data Words
Description	Text

DS5

HPP

ECWRDES Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	1
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, set the Module Description of the ECOM100. Typically this is done using NetEdit, but this IBox allows you to configure the module description in the ECOM100 using your ladder program.

The EWRDES is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to write the module description will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

	_FirstScan	ECOM10	0 Write Description
2		ECWRDES	IB-727
2		ECOM100#	KU
		Workspace	V503
		Success	C100
		Error	C101
		Error Code	V2000
		Description	Modbus/TCP Network #2

ECOM100 Write Gateway Address (ECWRGWA) (IB-731)

DS5	Used	
HPP	N/A	1

ECOM100 Write Gateway Address will write the given Gateway IP Address to the ECOM100 module on a leading edge transition to the IBox. See also ECOM100 IP Setup

(ECIPSUP) IBox 717 to setup ALL of the TCP/IP parameters in a single instruction - IP Address, Subnet Mask, and Gateway Address.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If there is an error, the Error Code parameter

✓X [№]	۲
ECOM100 Wr	ite Gateway Address
ECWRGWA	IB-731
ECOM100#	ко •
Workspace	V400 •
Success	C0 •
Error	C0 •
Error Code	V400 •
Gateway Address	0.0.0.0

will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The Gateway Address is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE, on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECWRGWA Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- Gateway Address: specifies the Gateway IP Address that will be written to the module

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error CodeV	See DL06 V-memory map - Data Words
Gateway Address	0.0.0.1. to 255.255.255.254

ECWRGWA Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Confi	4
1		
·		18-710
	ECOM100#	KU
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, assign the Gateway Address of the ECOM100 to 192.168.0.1

The ECWRGWA is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to write the Gateway Address will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

To configure all of the ECOM100 TCP/IP parameters in one IBox, see the ECOM100 IP Setup (ECIPSUP) IBox.

	_FirstScan	ECOM100 Write Gat	eway Address
2		ECWRGWA	IB-731
		ECOM100#	КO
		Workspace	V503
		Success	C100
		Error	C101
		Error Code	V2000
		Gateway Address	192.168.0.1

ECOM100 Write IP Address (ECWRIP) (IB-723)

DS5	Used
HPP	N/A

ECOM100 Write IP Address will write the given IP Address to the ECOM100 module on a leading edge transition to the IBox. See also ECOM100 IP Setup (ECIPSUP) IBox 717 to

setup ALL of the TCP/IP parameters in a single instruction - IP Address, Subnet Mask, and Gateway Address.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If there is an error, the Error Code parameter

N N湾	•
ECOM1	00 Write IP Address
ECWRIP	IB-723
ECOM100#	ко •
Workspace	V400 •
Success	C0 •
Error	C0 •
Error Code	V400 ·
IP Address	0.0.0.0

will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The IP Address is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECWRIP Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- IP Address: specifies the IP Address that will be written to the module

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error CodeV	See DL06 V-memory map - Data Words
IP Address	0.0.0.1. to 255.255.255.254

ECWRIP Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

ECOM100 Confi		g
	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, assign the IP Address of the ECOM100 to 192.168.12.100

The ECWRIP is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to write the IP Address will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

To configure all of the ECOM100 TCP/IP parameters in one IBox, see the ECOM100 IP Setup (ECIPSUP) IBox.

	_FirstScan	ECOM100 Wr	ite IP Address
2		ECWRIP	IB-723
		ECOM100#	K0
		Workspace	V503
		Success	C100
		Error	C101
		Error Code	V2000
		IP Address	192.168.12.100

ECOM100 Write Module ID (ECWRMID) (IB-721)

DS5	Used	ECOM100 Write Module ID will write the given Module ID on a leading edge transition to
HPP	N/A	the IBox

If the Module ID is set in the hardware using the dipswitches, this IBox will fail and return error code 1005 (decimal).

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If

<u>v</u> x¤	0
ECOM10	10 Write Module ID
ECWRMID	IB-721
ECOM100#	K0 •
Workspace	V400 •
Success	C0 •
Error	C0 •
Error Code	V400 •
Module ID	K0 •

there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The Module ID is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECWRMID Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- Module ID: specifies the Module ID that will be written to the module

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error CodeV	See DL06 V-memory map - Data Words
Module ID	K0-65535

ECWRMID Example

I.

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Confi	g
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, set the Module ID of the ECOM100. Typically this is done using NetEdit, but this IBox allows you to configure the module ID of the ECOM100 using your ladder program.

The EWRMID is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to write the module ID will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

ECOM100 Write Name (ECWRNAM) (IB-725)

DS5	Used
HPP	N/A

 $\frac{1}{2d}$ ECOM100 Write Name will write the given Name to the ECOM100 module on a leading $\frac{1}{4}$ edge transition to the IBox. If you use a dollar sign (\$) or double quote ("), use the

PRINT/VPRINT escape sequence of TWO dollar signs (\$\$) for a single dollar sign or dollar sign-double quote (\$") for a double quote character.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If

<u>vx</u> ¤		0
ECOM	1100 Write Name	
ECWRNAM		IB-725
ECOM100#	K0	•
Workspace	V400	•
Success	CO	•
Error	CO	•
Error Code	V400	•
Module Name		•

there is an error, the Error Code parameter will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The Name is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECWRNAM Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- Module Name: specifies the Name that will be written to the module

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
Error CodeV	See DL06 V-memory map - Data Words
Module Name	Text

ECWRNAM Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	
1	ECOM100	IB-710
	ECOM100 #	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, set the Module Name of the ECOM100. Typically this is done using NetEdit, but this IBox allows you to configure the module name of the ECOM100 using your ladder program.

The EWRNAM is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to write the module name will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

ECOM100 Write Subnet Mask (ECWRSNM) (IB-733)

DS5 Used HPP N/A

ECOM100 Write Subnet Mask will write the given Subnet Mask to the ECOM100 module on a leading edge transition to the IBox. See also ECOM100 IP Setup (ECIPSUP) IBox 717

to setup ALL of the TCP/IP parameters in a single instruction - IP Address, Subnet Mask, and Gateway Address.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

Either the Success or Error bit parameter will turn on once the command is complete. If there is an error, the Error Code parameter

N N ど N	•
ECOM10	0 Write Subnet Mask
ECWRSNM	IB-733
ECOM100#	ко •
Workspace	V400 •
Success	C0 •
Error	C0 •
Error Code	V400 •
Subnet Mask	0.0.0.0

will report an ECOM100 error code (less than 100), or a PLC logic error (greater than 1000).

The Subnet Mask is stored in Flash-ROM in the ECOM100 and the execution of this IBox will disable the ECOM100 module for at least a half second until it writes the Flash-ROM. Therefore, it is HIGHLY RECOMMENDED that you only execute this IBox ONCE on first scan. Since it requires a LEADING edge to execute, use a NORMALLY CLOSED SP0 (STR NOT First Scan) to drive the power flow to the IBox.

In order for this ECOM100 IBox to function, you must turn ON dip switch 7 on the ECOM100 circuit board.

ECWRSNM Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed
- Error Code: specifies the location where the Error Code will be written
- Subnet Mask: specifies the Subnet Mask that will be written to the module

Parameter	DL06 Range	
ECOM100#K	K0-255	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	
Error Code	See DL06 V-memory map - Data Words	
Subnet Mask	Masked IP Address	

ECWRSNM Example

I

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module.V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module.V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM100 Config	1
1	ECOM100	IB-710
	ECOM100 #	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

Rung 2: On the 2nd scan, assign the Subnet Mask of the ECOM100 to 255.255.0.0

The ECWRSNM is leading edge triggered, not power-flow driven (similar to a counter input leg). The command to write the Subnet Mask will be sent to the ECOM100 whenever the power flow into the IBox goes from OFF to ON.

If successful, turn on C100. If there is a failure, turn on C101. If it fails, you can look at V2000 for the specific error code.

To configure all of the ECOM100 TCP/IP parameters in one IBox, see the ECOM100 IP Setup (ECIPSUP) IBox.

	_FirstScan SP0	ECOM100 Write Sul	ECOM100 Write Subnet Mask	
2			10-733	
		ECOM100#	K0	
		Workspace	V503	
		Success	C100	
		Error	C101	
		Error Code	V2000	
		Subnet Mask 2	255.255.0.0	

ECOM100 RX Network Read (ECRX) (IB-740)

DS5 Used EC HPP N/A all

ECOM100 RX Network Read performs the RX instruction with built-in interlocking with all other ECOM100 RX (ECRX) and ECOM100 WX (ECWX) IBoxes in your program to

simplify communications networking. It will perform the RX on the specified ECOM100#'s network, which corresponds to a specific unique ECOM100 Configuration (ECOM100) IBox at the top of your program.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

ヘ メ ぎ		0
ECOM100 RX Ne	etwork Read	
ECRX		IB-740
ECOM100#	K0	•
Workspace	V400	•
Slave ID	K0	•
From Slave Element (Src)	CO	•
Number Of Bytes	K1	•
To Master Element (Dest)	TAO	•
Success	CO	•
Error	CO	•

Whenever this IBox has power, it will read element data from the specified slave into the given destination V memory buffer, giving other ECOM100 RX and ECOM100 WX IBoxes on that ECOM100# network a chance to execute.

For example, if you wish to read and write data continuously from 5 different slaves, you can have all of these ECRX and ECWX instructions in ONE RUNG driven by SP1 (Always On). They will execute round-robin style, automatically.

ECRX Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Slave ID: specifies the slave ECOM(100) PLC that will be targeted by the ECRX instruction
- From Slave Element (Src): specifies the slave address of the data to be read
- Number of Bytes: specifies the number of bytes to read from the slave ECOM(100) PLC
- To Master Element (Dest): specifies the location where the slave data will be placed in the master ECOM100 PLC
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
Slave IDK	K0-90
From Slave Element (Src) X,Y,C,S,T,CT,GX,GY,V	See DL06 V-memory map
Number of BytesK	K1-128
To Master Element (Dest)V	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

ECRX Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	ECOM400 Cord	~
1	ECOMING COM	y 19.710
-	ECOM100 #	KU1
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65 WORDs)	V402 - V502

(example continued on next page)

ECRX Example (con't)

Rung 2: Using ECOM100# K0, read X0-X7 from Slave K7 and write them to slave K5 as fast as possible. Store them in this local PLC in C200-C207, and write them to C300-C307 in slave K5.

Both the ECRX and ECWX work with the ECOM100 Config IBox to simplify all networking by handling all of the interlocks and proper resource sharing. They also provide very simplified error reporting. You no longer need to worry about any SP "busy bits" or "error bits", or what slot number a module is in, or have any counters or shift registers or any other interlocks for resource management.

In this example, SP1 (always ON) is driving both the ECRX and ECWX IBoxes in the same rung. On the scan that the Network Read completes, the Network Write will start that same scan. As soon as the Network Write completes, any pending operations below it in the program would get a turn. If there are no pending ECOM100 IBoxes below the ECWX, then the very next scan the ECRX would start its request again.

Using the ECRX and ECWX for all of your ECOM100 network reads and writes is the fastest the PLC can do networking. For local Serial Ports, DCM modules, or the original ECOM modules, use the NETCFG and NETRX/NETWX IBoxes.

2 ECOM100 RX Network Read ECRX BECA ECOM100 # K Workspace V50 Slave ID K From Slave Element (Src) Number Of Bytes C10 Error C10 ECOM100 WX Network Write ECWX BF7 CAU ECOM100 # K Workspace V50 Slave ID K From Master Element (Src) VC20 Number Of Bytes K To Slave Element (Dest) VC20 Slave ID K From Master Element (Src) VC20 Number Of Bytes K To Slave Element (Dest) K To Slave Element K T		0.5			
2 SP1 ECRX IB-74 ECOM100 # k Workspace V50 Slave ID k From Slave Element (Src) >> Number Of Bytes k To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10		_on	ECOM100 RX Network Read		
2 ECOM100 # k Workspace V50 Slave ID k From Slave Element (Src) X Number Of Bytes k To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10	_	SP1	ECRX	IB-740	
ECOM100 # k Workspace V50 Slave ID k From Slave Element (Src) > Number Of Bytes k To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10	2				
Workspace V50 Slave ID k From Slave Element (Src) > Number Of Bytes k To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			ECOM100#	K0	
Slave ID k From Slave Element (Src) > Number Of Bytes k To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			Workspace	V503	
From Slave Element (Src) >> Number Of Bytes k To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			Slave ID	K7	
Number Of Bytes k To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			From Slave Element (Src)	X0	
To Master Element (Dest) VC20 Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			Number Of Bytes	K1	
Success C10 Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			To Master Element (Dest)	VC200	
Error C10 ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			Success	C100	
ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			Error	C101	
ECOM100 WX Network Write ECWX IB-74 ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10					
ECWX IB-74 ECOM100# k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			ECOM100 WX Network V	√rite	
ECOM100 # k Workspace V50 Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10		L	ECWX	IB-741	
WorkspaceV50Slave IDkFrom Master Element (Src)VC20Number Of ByteskTo Slave Element (Dest)VC30SuccessC10ErrorC10			ECOM100#	K0	
Slave ID k From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			Workspace	V504	
From Master Element (Src) VC20 Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			Slave ID	K5	
Number Of Bytes k To Slave Element (Dest) VC30 Success C10 Error C10			From Master Element (Src)	VC200	
To Slave Element (Dest) VC30 Success C10 Error C10			Number Of Bytes	K1	
Success C10 Error C10			To Slave Element (Dest)	VC300	
Error C10			Success	C102	
			Error	C103	
			L		

L
ECOM100 WX Network Write(ECWX) (IB-741)

DS5 Used ECOM100 WX Network Write performs the WX instruction with built-in interlocking with HPP N/A all other ECOM100 RX (ECRX) and ECOM100 WX (ECWX) IBoxes in your program to

simplify communications networking. It will perform the WX on the specified ECOM100#'s network, which corresponds to a specific unique ECOM100 Configuration (ECOM100) IBox at the top of your program.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

N XX		0
ECOM100 WX Ne	etwork Write	
ECWX		IB-741
ECOM100#	K0	•
Workspace	V400	•
Slave ID	K0	•
From Master Element (Src)	TA0	•
Number Of Bytes	K1	•
To Slave Element (Dest)	C0	•
Success	CO	•
Error	CO	•

Whenever this IBox has power, it will write data from the master's V memory buffer to the specified slave starting with the given slave element, giving other ECOM100 RX and ECOM100 WX IBoxes on that ECOM100# network a chance to execute.

For example, if you wish to read and write data continuously from 5 different slaves, you can have all of these ECRX and ECWX instructions in ONE RUNG driven by SP1 (Always On). They will execute round-robin style, automatically.

ECWX Parameters

- ECOM100#: this is a logical number associated with this specific ECOM100 module in the specified slot. All other ECxxxx IBoxes that need to reference this ECOM100 module must reference this logical number
- Workspace: specifies a V-memory location that will be used by the instruction
- Slave ID: specifies the slave ECOM(100) PLC that will be targeted by the ECWX instruction
- From Master Element (Src): specifies the location in the master ECOM100 PLC where the data will be sourced from
- Number of Bytes: specifies the number of bytes to write to the slave ECOM(100) PLC
- To Slave Element (Dest): specifies the slave address the data will be written to
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed

Parameter	DL06 Range
ECOM100#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
Slave IDK	K0-90
From Master Element (Src)V	See DL06 V-memory map - Data Words
Number of BytesK	K1-128
To Slave Element (Dest) X,Y,C,S,T,CT,GX,GY,V	See DL06 V-memory map
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

ECWX Example

Rung 1: The ECOM100 Config IBox is responsible for coordination/interlocking of all ECOM100 type IBoxes for one specific ECOM100 module. Tag the ECOM100 in slot 1 as ECOM100# K0. All other ECxxxx IBoxes refer to this module # as K0. If you need to move the module in the base to a different slot, then you only need to change this one IBox. V400 is used as a global result status register for the other ECxxxx IBoxes using this specific ECOM100 module. V401 is used to coordinate/interlock the logic in all of the other ECxxxx IBoxes using this specific ECOM100 module. V402-V502 is a common 130 byte buffer available for use by the other ECxxxx IBoxes using this specific ECOM100 module.

	EC	OM100 Config
1	ECOM100	IB-710
	ECOM100#	K0
	Slot	K1
	Status	V400
	Workspace	V401
	Msg Buffer (65	WORDs) V402 - V502
		-

(example continued on next page)

L

110 DL06 Micro PLC User Manual Supplement - IBox Instructions

ECWX Example (con't)

Rung 2: Using ECOM100# K0, read X0-X7 from Slave K7 and write them to slave K5 as fast as possible. Store them in this local PLC in C200-C207, and write them to C300-C307 in slave K5.

Both the ECRX and ECWX work with the ECOM100 Config IBox to simplify all networking by handling all of the interlocks and proper resource sharing. They also provide very simplified error reporting. You no longer need to worry about any SP "busy bits" or "error bits", or what slot number a module is in, or have any counters or shift registers or any other interlocks for resource management.

In this example, SP1 (always ON) is driving both the ECRX and ECWX IBoxes in the same rung. On the scan that the Network Read completes, the Network Write will start that same scan. As soon as the Network Write completes, any pending operations below it in the program would get a turn. If there are no pending ECOM100 IBoxes below the ECWX, then the very next scan the ECRX would start its request again.

Using the ECRX and ECWX for all of your ECOM100 network reads and writes is the fastest the PLC can do networking. For local Serial Ports, DCM modules, or the original ECOM modules, use the NETCFG and NETRX/NETWX IBoxes.

	_On	ECOM100 RX Network R	ad
_	SP1	ECRX	IB-740
2			
		ECOM100#	K0
		Workspace	V503
		Slave ID	K7
		From Slave Element (Src)	X0
		Number Of Bytes	K1
		To Master Element (Dest)	VC200
		Success	C100
		Error	C101
		ECOM100 WX Network W	
			18-741
		ECOM100#	KU VEQ4
		vvorkspace	V504
		Slave ID	K5
		From Master Element (Src)	VC200
		Number Of Bytes	K1
		To Slave Element (Dest)	AC300
		Success	C102
		Error	C103

NETCFG Network Configuration (NETCFG) (IB-700)

DS5	Used	1
HPP	N/A	1

Network Config defines all the common information necessary for performing RX/WX Networking using the NETRX and NETWX IBox instructions via a local CPU serial port, DCM or ECOM module.

You must have the Network Config instruction at the top of your ladder/stage program with any other configuration IBoxes.

If you use more than one local serial port, DCM or ECOM in your PLC for RX/WX Networking, you must have a different Network Config instruction for EACH RX/WX network in your system that utilizes any NETRX/NETWX IBox instructions.

NN	0
Network Co	nfig
NETCFG	IB-700
Network #	K0 •
CPU Port or Slot (ex. KF2 or K3)	K0 •
Workspace	V400 •

The Workspace parameter is an internal, private register used by the Network Config IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

The 2nd parameter "CPU Port or Slot" is the same value as in the high byte of the first LD instruction if you were coding the RX or WX rung yourself. This value is CPU and port specific (check your PLC manual), but possible values include KF2 for local CPU serial port 2 of an 06, K3 for a DCM or ECOM in slot 3 of a local 205 base, or K37 for a DCM in a 405 expansion base 3, slot 7.

NETCFG Parameters

- Network#: specifies a unique # for each ECOM(100) or DCM network to use
- CPU Port or Slot: specifies the CPU port number or slot number of DCM/ECOM(100) used
- Workspace: specifies a V-memory location that will be used by the instruction

Parameter	DL06 Range
Network# K	K0-255
CPU Port or SlotK	K0-FF
WorkspaceV	See DL06 V-memory map - Data Words

NETCFG Example

The Network Configuration IBox coordinates all of the interaction with other Network IBoxes (NETRX/NETWX). You must have a Network Configuration IBox for each serial port network, DCM module network, or original ECOM module network in your system. Configuration IBoxes must be at the top of your program and must execute every scan.

This IBox defines Network# K0 to be for the local CPU serial port #2 (KF2). For local CPU serial ports or DCM/ECOM modules, use the same value you would use in the most significant byte of the first LD instruction in a normal RX/WX rung to reference the port or module. Any NETRX or NETWX IBoxes that need to reference this specific network would enter K0 for their Network# parameter.

The Workspace register is used to maintain state information about the port or module, along with proper sharing and interlocking with the other NETRX and NETWX IBoxes in the program. This V memory register must not be used anywhere else in the entire program.

	Network Config	
1	NETCFG	IB-700
	Network #	K0
	CPU Port or Slot (ex. KF2 or K3)	Kf2
	Workspace	V400
	Workspace	

S

Network RX Read (NETRX) (IB-701)

DS5 Used HPP N/A

Network RX Read performs the RX instruction with built-in interlocking with all other Network RX (NETRX) and Network WX (NETWX) IBoxes in your program to simplify

communications networking. It will perform the RX on the specified Network #, which corresponds to a specific unique Network Configuration (NETCFG) at the top of your program.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

✓X №	C)
Network RX	Read	
NETRX	IB-701	
Network #	K0 •	
Workspace	V400 •	
Slave ID	K1 •	
From Slave Element (Src)	C0 •	
Number Of Bytes	K1 •	
To Master Element (Dest)	TA0 •	
Success	C0 •	
Error	C0 •	

Whenever this IBox has power, it will read

element data from the specified slave into the given destination V memory buffer, giving other Network RX and Network WX IBoxes on that Network # a chance to execute.

For example, if you wish to read and write data continuously from 5 different slaves, you can have all of these NETRX and NETWX instructions in ONE RUNG driven by SP1 (Always On). They will execute round-robin style, automatically.

NETRX Parameters

- Network#: specifies the (CPU port's, DCM's, ECOM's) Network # defined by the NETCFG instruction
- Workspace: specifies a V-memory location that will be used by the instruction
- Slave ID: specifies the slave PLC that will be targeted by the NETRX instruction
- From Slave Element (Src): specifies the slave address of the data to be read
- Number of Bytes: specifies the number of bytes to read from the slave device
- To Master Element (Dest): specifies the location where the slave data will be placed in the master PLC
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed

Parameter	DL06 Range
Network#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
Slave IDK	K0-90
From Slave Element (Src) X,Y,C,S,T,CT,GX,GY,V	See DL06 V-memory map
Number of Bytes K	K1-128
To Master Element (Dest)V	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

NETRX Example

Rung 1: The Network Configuration IBox coordinates all of the interaction with other Network IBoxes (NETRX/NETWX). You must have a Network Configuration IBox for each serial port network, DCM module network, or original ECOM module network in your system. Configuration IBoxes must be at the top of your program and must execute every scan.

This IBox defines Network# K0 to be for the local CPU serial port #2 (KF2). For local CPU serial ports or DCM/ECOM modules, use the same value you would use in the most significant byte of the first LD instruction in a normal RX/WX rung to reference the port or module. Any NETRX or NETWX IBoxes that need to reference this specific network would enter K0 for their Network# parameter.

The Workspace register is used to maintain state information about the port or module, along with proper sharing and interlocking with the other NETRX and NETWX IBoxes in the program. This V memory register must not be used anywhere else in the entire program.

(example continued on next page)

NETRX Example (con't)

Rung 2: Using Network# K0, read X0-X7 from Slave K7 and write them to slave K5 as fast as possible. Store them in this local PLC in C200-C207, and write them to C300-C307 in slave K5.

Both the NETRX and NETWX work with the Network Config IBox to simplify all networking by handling all of the interlocks and proper resource sharing. They also provide very simplified error reporting. You no longer need to worry about any SP "busy bits" or "error bits", or what port number or slot number a module is in, or have any counters or shift registers or any other interlocks for resource management.

In this example, SP1 (always ON) is driving both the NETRX and NETWX IBoxes in the same rung. On the scan that the Network Read completes, the Network Write will start that same scan. As soon as the Network Write completes, any pending operations below it in the program would get a turn. If there are no pending NETRX or NETWX IBoxes below this IBox, then the very next scan the NETRX would start its request again.

Using the NETRX and NETWX for all of your serial port, DCM, or original ECOM network reads and writes is the fastest the PLC can do networking. For ECOM100 modules, use the ECOM100 and ECRX/ECWX IBoxes.

	_On	Network BX Read	
2	SP1	NETRX	IB-701
2		Network # Workspace Slave ID From Slave Element (Src) Number Of Bytes To Master Element (Dest) Success Error	K0 V401 K7 X0 K1 VC200 C100 C101
		Network WX Write	
	_	NETWX	IB-702
		Workspace Slave ID	KU V402 K5
		From Master Element (Src) Number Of Bytes	VC200 K1
		To Slave Element (Dest)	VC300
		Error	C102 C103

Network WX Write (NETWX) (IB-702)

DS5	Used	1
HPP	N/A	I

Network WX Write performs the WX instruction with built-in interlocking with all other Network RX (NETRX) and Network WX (NETWX) IBoxes in your program to simplify

communications networking. It will perform the WX on the specified Network #, which corresponds to a specific unique Network Configuration (NETCFG) at the top of your program.

The Workspace parameter is an internal, private register used by this IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

N X X		0
Network WX	Write	
NETWX		IB-702
Network #	K0	•
Workspace	V400	•
Slave ID	K0	•
From Master Element (Src)	TAO	•
Number Of Bytes	K1	•
To Slave Element (Dest)	CO	•
Success	CO	•
Error	CO	•

Whenever this IBox has power, it will write

data from the master's V memory buffer to the specified slave starting with the given slave element, giving other Network RX and Network WX IBoxes on that Network # a chance to execute.

For example, if you wish to read and write data continuously from 5 different slaves, you can have all of these NETRX and NETWX instructions in ONE RUNG driven by SP1 (Always On). They will execute round-robin style, automatically.

NETWX Parameters

- Network#: specifies the (CPU port's, DCM's, ECOM's) Network # defined by the NETCFG instruction
- Workspace: specifies a V-memory location that will be used by the instruction
- Slave ID: specifies the slave PLC that will be targeted by the NETWX instruction
- From Master Element (Src): specifies the location in the master PLC where the data will be sourced from
- Number of Bytes: specifies the number of bytes to write to the slave PLC
- To Slave Element (Dest): specifies the slave address the data will be written to
- Success: specifies a bit that will turn on once the request is completed successfully
- Error: specifies a bit that will turn on if the instruction is not successfully completed

Parameter	DL06 Range
Network# K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
Slave IDK	K0-90
From Master Element (Src)V	See DL06 V-memory map - Data Words
Number of BytesK	K1-128
To Slave Element (Dest) X,Y,C,S,T,CT,GX,GY,V	See DL06 V-memory map
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

NETWX Example

Rung 1: The Network Configuration IBox coordinates all of the interaction with other Network IBoxes (NETRX/NETWX). You must have a Network Configuration IBox for each serial port network, DCM module network, or original ECOM module network in your system. Configuration IBoxes must be at the top of your program and must execute every scan.

This IBox defines Network# K0 to be for the local CPU serial port #2 (KF2). For local CPU serial ports or DCM/ECOM modules, use the same value you would use in the most significant byte of the first LD instruction in a normal RX/WX rung to reference the port or module. Any NETRX or NETWX IBoxes that need to reference this specific network would enter K0 for their Network# parameter.

The Workspace register is used to maintain state information about the port or module, along with proper sharing and interlocking with the other NETRX and NETWX IBoxes in the program. This V memory register must not be used anywhere else in the entire program.

(example continued on next page)

NETWX Example (con't)

Rung 2: Using Network# K0, read X0-X7 from Slave K7 and write them to slave K5 as fast as possible. Store them in this local PLC in C200-C207, and write them to C300-C307 in slave K5.

Both the NETRX and NETWX work with the Network Config IBox to simplify all networking by handling all of the interlocks and proper resource sharing. They also provide very simplified error reporting. You no longer need to worry about any SP "busy bits" or "error bits", or what port number or slot number a module is in, or have any counters or shift registers or any other interlocks for resource management.

In this example, SP1 (always ON) is driving both the NETRX and NETWX IBoxes in the same rung. On the scan that the Network Read completes, the Network Write will start that same scan. As soon as the Network Write completes, any pending operations below it in the program would get a turn. If there are no pending NETRX or NETWX IBoxes below this IBox, then the very next scan the NETRX would start its request again.

Using the NETRX and NETWX for all of your serial port, DCM, or original ECOM network reads and writes is the fastest the PLC can do networking. For ECOM100 modules, use the ECOM100 and ECRX/ECWX IBoxes.

CTRIO Configuration (CTRIO) (IB-1000)

DS5	Used
HPP	N/A

CTRIO Config defines all the common information for one specific CTRIO module which is used by the other CTRIO IBox instructions (for example, CTRLDPR - CTRIO Load

Profile, CTREDRL - CTRIO Edit and Reload Preset Table, CTRRTLM - CTRIO Run to Limit Mode, ...).

The Input/Output parameters for this instruction can be copied directly from the CTRIO Workbench configuration for this CTRIO module. Since the behavior is slightly different when the CTRIO module is in an EBC Base via an ERM, you must specify whether the CTRIO module is in a local base

V X¤	٥	
CTF	RIO Config	
CTRIO	IB-1000	
CTRIO #	ко •	
Slot	К1 •	
Workspace	V400 •	
CTRIO Location • Local Base		
C EBC (Co	nnected via ERM)	
Input	V400 •	
Output	V400 *	

or in an EBC base. The DL06 PLC only supports local base operation at this time.

You must have the CTRIO Config IBox at the top of your ladder/stage program along with any other configuration IBoxes.

If you have more than one CTRIO in your PLC, you must have a different CTRIO Config IBox for EACH CTRIO module in your system that utilizes any CTRIO IBox instructions. Each CTRIO Config IBox must have a UNIQUE CTRIO# value. This is how the CTRIO IBoxes differentiate between the different CTRIO modules in your system.

The Workspace parameter is an internal, private register used by the CTRIO Config IBox and MUST BE UNIQUE in this one instruction and MUST NOT be used anywhere else in your program.

CTRIO Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number
- Slot: specifies which PLC option slot the CTRIO module occupies
- Workspace: specifies a V-memory location that will be used by the instruction
- CTRIO Location: specifies where the module is located (local base only for DL06)
- Input: This needs to be set to the same V-memory register as is specified in CTRIO Workbench as 'Starting V address for inputs' for this unique CTRIO.
- Output: This needs to be set to the same V-memory register as is specified in CTRIO Workbench as 'Starting V address for outputs' for this unique CTRIO.

Parameter	DL06 Range
CTRIO#K	K0-255
SlotK	K1-4
WorkspaceV	See DL06 V-memory map - Data Words
InputV	See DL06 V-memory map - Data Words
OutputV	See DL06 V-memory map - Data Words

CTRIO Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

	CTRIC) Config
1	CTRIO	- IB-1000
	CTRIO #	K1
	Slot	K2
	Workspace	V400
	Input	V2000 - V2025
	Output	V2030 - V2061

CTRIO Add Entry to End of Preset Table (CTRADPT) (IB-1005)

DS5 Used HPP N/A	CTRIO Add Entry to End of Preset Table, on a leadin append an entry to the end of a memory based Preset	ng edge trans Table on a sp	ition to this IBox, will becific CTRIO Output
	resource. This IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information. Entry Type: K0: Set K1: Reset K2: Pulse On (uses Pulse Time)	CTRIO Add Entr CTRADPT CTRIO # Output # Entry Type Pulse Time Preset Count Workspace Success Error	v to End of Preset Table IB-1005 K0 V400 V400 V400 V400 V400 C0 C0 C0 C0
	K4: Toggle		

K5: Reset Count

Note that the Pulse Time parameter is ignored by some Entry Types.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

CTRAPT Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config)
- Output#: specifies a CTRIO output to be used by the instruction
- Entry Type: specifies the Entry Type to be added to the end of a Preset Table
- Pulse Time: specifies a pulse time for the Pulse On and Pulse Off Entry Types
- Preset Count: specifies an initial count value to begin at after Reset
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range
CTRIO#K	K0-255
Output#K	К0-3
Entry TypeV,K	K0-5; See DL06 V-memory map - Data Words
Pulse TimeV,K	K0-65535; See DL06 V-memory map - Data Words
Preset CountV,K	K0-2147434528; See DL06 V-memory map
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

CTRADPT Example

I

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

	CTR	IO Config
1	CTRIO	IB-1000
	CTRIO#	K1
	Slot	K2
	Workspace	V400
	Input	V2000 - V2025
	Output	V2030 - V2061

Rung 2: This rung is a sample method for enabling the CTRADPT command. A C-bit is used to allow the programmer to control the command from Data View for testing purposes.

Turning on C0 will cause the CTRADPT instruction to add a new preset to the preset table for output #0 on the CTRIO in slot 2. The new preset will be a command to RESET (entry type K1=reset), pulse time is left at zero as the reset type does not use this, and the count at which it will reset will be 20.

Operating procedure for this example code is to load the CTRADPT_ex1.cwb file to your CTRIO, then enter the code shown here, change to RUN mode, enable output #0 by turning on C2 in Data View, turn encoder on CTRIO to value above 10 and output #0 light will come on and stay on for all counts past 10. Now reset the counter with C1, enable C0 to execute CTRADPT command to add a reset for output #0 at a count of 20, turn on C2 to enable output #0, then turn encoder to value of 10+ (output #0 should turn on) and then continue on to count of 20+ (output #0 should turn off).

	Start CTRADPT	CTRIO Add Entry to End of CTRADPT	of Preset Table IB-1005
2			
		CTRIO#	K1
		Output #	K0
		Entry Type	K1
		Pulse Time	K0
		Preset Count	K20
		Workspace	V401
		Success	C100
		Error	C101
	(anomale continued on next as		

⁽example continued on next page)

CTRADPT Example (con't)

Rung 3: This rung allows the programmer to reset the counter from the ladder logic.

Rung 4: This rung allows the operator to enable output #0 from the ladder code.

CTRIO Clear Preset Table (CTRCLRT) (IB-1007)

DS5	Used	
HPP	N/A	1

CTRIO Clear Preset Table will clear the RAM based Preset Table on a leading edge transition

to this IBox. This IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

√X¤	٥
CTRIO C	lear Preset Table
CTRCLRT	IB-1007
CTRIO #	ко •
Output #	ко •
Workspace	V400 ·
Success	C0 •
Error	C0 •

CTRCLRT Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config)
- Output#: specifies a CTRIO output to be used by the instruction
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range	
CTRIO#K	K0-255	
Output#K	K0-3	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	

125

CTRCLRT Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

CTRIO Config	
CTRIO	IB-1000
CTRIO#	K1
Slot	K2
Workspace	V400
Input	V2000 - V2025
Output	V2030 - V2061

Rung 2: This rung is a sample method for enabling the CTRCLRT command. A C-bit is used to allow the programmer to control the command from Data View for testing purposes.

Turning on C0 will cause the CTRCLRT instruction to clear the preset table for output #0 on the CTRIO in slot 2.

Operating procedure for this example code is to load the CTRCLRT_ex1.cwb file to your CTRIO, then enter the code shown here, change to RUN mode, enable output #0 by turning on C2 in Data View, turn encoder on CTRIO to value above 10 and output #0 light will come on and stay on until a count of 20 is reached, where it will turn off. Now reset the counter with C1, enable C0 to execute CTRCLRT command to clear the preset table, turn on C2 to enable output #0, then turn encoder to value of 10+ (output #0 should NOT turn

	Start CTRCLRT C0	CTRIO Clear Presi CTRCLRT	et Table IB-1007
2		CTRIO #	К1
		Output # Workspace	K0 V401
		Success	C100
		Error	C101

(example continued on next page)

I

CTRCLRT Example (con't)

Rung 3: This rung allows the programmer to reset the counter from the ladder logic.

Rung 4: This rung allows the operator to enable output #0 from the ladder code.

CTRIO Edit Preset Table Entry (CTREDPT) (IB-1003)

DS5	Used
HPP	N/A

CTRIO Edit Preset Table Entry, on a leading edge transition to this IBox, will edit a single entry in a Preset Table on a specific CTRIO Output resource. This IBox is good if you are

editing more than one entry in a file at a time. If you wish to do just one edit and then reload the table immediately, see the CTRIO Edit and Reload Preset Table Entry (CTREDRL) IBox. This IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

N X X	0
CTRIO Edit P	reset Table Entry
CTREDPT	IB-1003
CTRIO #	K0 •
Output #	K0 •
Table #	V400 •
Entry # (0-based)	V400 •
Entry Type	V400 •
Pulse Time	V400 •
Preset Count	V400 •
Workspace	V400 •
Success	C0 •
Error	C0 •

Entry Type:

K0: Set

K1: Reset

K2: Pulse On (uses Pulse Time)

K3: Pulse Off (uses Pulse Time)

K4: Toggle

K5: Reset Count

Note that the Pulse Time parameter is ignored by some Entry Types.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

CTREDPT Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Table#: specifies the Table number of which an Entry is to be edited
- Entry#: specifies the Entry location in the Preset Table to be edited
- Entry Type: specifies the Entry Type to add during the edit
- Pulse Time: specifies a pulse time for the Pulse On and Pulse Off Entry Types
- Preset Count: specifies an initial count value to begin at after Reset
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range	
CTRIO#K	K0-255	
Output#K	K0-3	
Table#V,K	K0-255; See DL06 V-memory map - Data Words	
Entry#V,K	K0-255; See DL06 V-memory map - Data Words	
Entry ТуреV,К	K0-5; See DL06 V-memory map - Data Words	
Pulse TimeV,K	K0-65535; See DL06 V-memory map - Data Words	
Preset CountV,K	K0-2147434528; See DL06 V-memory map	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	

CTREDPT Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

		CTRIO Config	
1	CTRIO	IB-1000	
	CTRIO #	ŧ К1	
	Slot	K2	
	Workspa	ace V400	
	Input	V2000 - V2025	
	Output	V2030 - V2061	

(example continued on next page)

129

CTREDPT Example (con't)

Rung 2: This rung is a sample method for enabling the CTREDPT command. A C-bit is used to allow the programmer to control the command from Data View for testing purposes.

Turning on C0 will cause the CTREDPT instruction to change the second preset from a reset at a count of 20 to a reset at a count of 30 for output #0 on the CTRIO in slot 2.

Operating procedure for this example code is to load the CTREDPT_ex1.cwb file to your CTRIO, then enter the code shown here, change to RUN mode, enable output #0 by turning on C2 in Data View, turn encoder on CTRIO to value above 10 and output #0 light will come on and stay on until a count of 20 is reached, where it will turn off. Now reset the counter with C1, enable C0 to execute CTREDPT command to change the second preset, turn on C2 to enable output #0, then turn encoder to value of 10+ (output #0 should turn on) and then continue past a count of 30 (output #0 should turn off).

Note that we must also reload the profile after changing the preset(s), this is why the CTRLDPR command follows the CTREDPT command in this example.

		CTRIO Edit Preset	Table Entry
	Start CTREDPT	CTREDPT	IB-1003
2			
2			1/4
		Tahla #	K0 K1
		Fntry # (0-based)	K1
		Entry Type	K1
		Pulse Time	K0
		Preset Count	K30
		Workspace	V401
		Success	C100
		Error	C101
			Profilo
			IB-1001
		CTRIO#	K1
		Output #	K0
		File #	K1
		Workspace	V402
		Success	C102
		Error	C103

(example continued on next page)

CTREDPT Example (con't)

Rung 3: This rung allows the programmer to reset the counter from the ladder logic.

Rung 4: This rung allows the operator to enable output #0 from the ladder code.

CTRIO Edit Preset Table Entry and Reload (CTREDRL) (IB-1002)

DS5	Used
HPP	N/A

CTRIO Edit Preset Table Entry and Reload, on a leading edge transition to this IBox, will perform this dual operation to a CTRIO Output resource in one CTRIO command. This

√X %

CTREDRL

CTRIO #

Output #

Table #

Entry Type

Pulse Time

Success

Error

Preset Count Workspace

Entry # (0-based)

CTRIO Edit Preset Table Entry and Reload

K0

K0

V400

V400

V400 V400

V400

V400

CO

CO

IB-1002

٠

٠

IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

Entry Type:

K0: Set

K1: Reset

- K2: Pulse On (uses Pulse Time)
- K3: Pulse Off (uses Pulse Time)
- K4: Toggle
- K5: Reset Count

Note that the Pulse Time parameter is ignored by some Entry Types.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

CTREDRL Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Table#: specifies the Table number of which an Entry is to be edited
- Entry#: specifies the Entry location in the Preset Table to be edited
- Entry Type: specifies the Entry Type to add during the edit
- Pulse Time: specifies a pulse time for the Pulse On and Pulse Off Entry Types
- Preset Count: specifies an initial count value to begin at after Reset
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range	
CTRIO#K	K0-255	
Output#K	КО-З	
Table# V,K	K0-255; See DL06 V-memory map - Data Words	
Entry# V,K	K0-255; See DL06 V-memory map - Data Words	
Entry TypeV,K	K0-5; See DL06 V-memory map - Data Words	
Pulse TimeV,K	K0-65535; See DL06 V-memory map - Data Words	
Preset CountV,K	K0-2147434528; See DL06 V-memory map	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	

CTREDRL Example

T

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

		CTRIO Config	
1		CTRIO	IB-1000
		CTRIO #	K1
		Slot	K2
		Workspace	V400
		Input	V2000 - V2025
		Output	V2030 - V2061
	L		

(example continued on next page)

CTREDRL Example (con't)

Rung 2: This rung is a sample method for enabling the CTREDRL command. A C-bit is used to allow the programmer to control the command from Data View for testing purposes.

Turning on C0 will cause the CTREDRL instruction to change the second preset in file 1 from a reset at a value of 20 to a reset at a value of 30.

Operating procedure for this example code is to load the CTREDRL_ex1.cwb file to your CTRIO, then enter the code shown here, change to RUN mode, enable output #0 by turning on C2 in Data View, turn encoder on CTRIO to value above 10 and output #0 light will come on, continue to a count above 20 and the output #0 light will turn off. Now reset the counter with C1, enable C0 to execute CTREDRL command to change the second preset count value to 30, then turn encoder to value of 10+ (output #0 should turn on) and continue on to a value of 30+ and the output #0 light will turn off.

Note that it is not necessary to reload this file separately, however, the command can only change one value at a time.

		CTRIO Edit Preset Table Entry and Reload	
	Start CTREDRL	CTREDRL	IB-1002
2			
		CTRIO #	К1
		Output #	K0
		Table #	K1
		Entry # (0-based)	K1
		Entry Type	K1
		Pulse Time	K0
		Preset Count	K30
		Workspace	V401
		Success	C100
		Error	C101

(example continued on next page)

ī

CTREDRL Example (con't)

Rung 3: This rung allows the programmer to reset the counter from the ladder logic.

Rung 4: This rung allows the operator to enable output #0 from the ladder code.

CTRIO Initialize Preset Table (CTRINPT) (IB-1004)

DS5	Used	0
HPP	N/A	e

CTRIO Initialize Preset Table, on a leading edge transition to this IBox, will create a single entry Preset Table in memory but not as a file, on a specific CTRIO Output resource. This

IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

Entry Type:

K0: Set

K1: Reset

K2: Pulse On (uses Pulse Time)

K3: Pulse Off (uses Pulse Time)

K4: Toggle

K5: Reset Count

Note that the Pulse Time parameter is ignored by some Entry Types.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

CTRINPT Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Entry Type: specifies the Entry Type to add during the edit
- Pulse Time: specifies a pulse time for the Pulse On and Pulse Off Entry Types
- Preset Count: specifies an initial count value to begin at after Reset
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

<u>/</u> X]%	0
CTRIO Initi	alize Preset Table
CTRINPT	IB-1004
CTRIO #	K0 •
Output #	K0 •
Entry Type	V400 •
Pulse Time	V400 •
Preset Count	V400 •
Workspace	V400 •
Success	C0 •
Error	C0 •

Parameter	DL06 Range
CTRIO#K	K0-255
Output#K	K0-3
Entry TypeV,K	K0-5; See DL06 V-memory map - Data Words
Pulse TimeV,K	K0-65535; See DL06 V-memory map - Data Words
Preset CountV,K	K0-2147434528; See DL06 V-memory map
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

CTRINPT Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

(example continued on next page)

CTRINPT Example (con't)

Rung 2: This rung is a sample method for enabling the CTRINPT command. A C-bit is used to allow the programmer to control the command from Data View for testing purposes.

Turning on C0 will cause the CTRINPT instruction to create a single entry preset table, but not as a file, and use it for the output #0. In this case the single preset will be a set at a count of 15 for output #0.

Operating procedure for this example code is to load the CTRINPT_ex1.cwb file to your CTRIO, then enter the code shown here, change to RUN mode, enable output #0 by turning on C2 in Data View, turn encoder on CTRIO to value above 15 and output #0 light will not come on. Now reset the counter with C1, enable C0 to execute CTRINPT command to create a single preset table with a preset to set output#0 at a count of 15, then turn encoder to value of 15+ (output #0 should turn on).

(example continued on next page)

CTRINPT Example (con't)

Rung 3: This rung allows the programmer to reset the counter from the ladder logic.

Rung 4: This rung allows the operator to enable output #0 from the ladder code.

CTRIO Initialize Preset Table (CTRINTR) (IB-1010)

DS5	Used	
HPP	N/A	

CTRIO Initialize Preset Table, on a leading edge transition to this IBox, will create a single entry Preset Table in memory but not as a file, on a specific CTRIO Output resource.This

IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

Entry Type:

K0: Set

K1: Reset

K2: Pulse On (uses Pulse Time)

K3: Pulse Off (uses Pulse Time)

K4: Toggle

K5: Reset Count

Note that the Pulse Time parameter is ignored by some Entry Types.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

CTRINTR Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Entry Type: specifies the Entry Type to add during the edit
- Pulse Time: specifies a pulse time for the Pulse On and Pulse Off Entry Types
- Preset Count: specifies an initial count value to begin at after Reset
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

	U
CTRIO Initialize	Preset Table on Reset
CTRINTR	IB-1010
CTRIO #	K0 •
Output #	K0 •
Entry Type	V400 •
Pulse Time	V400 •
Preset Count	V400 •
Workspace	V400 •
Success	C0 •
Error	CO •

Parameter	DL06 Range
CTRIO#K	K0-255
Output#K	К0-3
Entry TypeV,K	K0-5; See DL06 V-memory map - Data Words
Pulse TimeV,K	K0-65535; See DL06 V-memory map - Data Words
Preset CountV,K	K0-2147434528; See DL06 V-memory map
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

CTRINTR Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

(example continued on next page)

CTRINTR Example (con't)

Rung 2: This rung is a sample method for enabling the CTRINTR command. A C-bit is used to allow the programmer to control the command from Data View for testing purposes.

Turning on C0 will cause the CTRINTR instruction to create a single entry preset table, but not as a file, and use it for output #0, the new preset will be loaded when the current count is reset. In this case the single preset will be a set at a count of 25 for output #0.

Operating procedure for this example code is to load the CTRINTR_ex1.cwb file to your CTRIO, then enter the code shown here, change to RUN mode, enable output #0 by turning on C2 in Data View, turn encoder on CTRIO to value above 10 and output #0 light will come on. Now turn on C0 to execute the CTRINTR command, reset the counter with C1, then turn encoder to value of 25+ (output #0 should turn on).

(example continued on next page)

142 DL06 Micro PLC User Manual Supplement - IBox Instructions

CTRINTR Example (con't)

Rung 3: This rung allows the programmer to reset the counter from the ladder logic.

Rung 4: This rung allows the operator to enable output #0 from the ladder code.

CTRIO Load Profile (CTRLDPR) (IB-1001)

DS5	Used
HPP	N/A

CTRIO Load Profile loads a CTRIO Profile File to a CTRIO Output resource on a leading edge transition to this IBox. This IBox will take more than 1 PLC scan to execute. Either the

Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

~ × え		0
CTRI	O Load Profile	
CTRLDPR		IB-1001
CTRIO #	K0	•
Output #	K0	•
File #	V400	•
Workspace	V400	•
Success	CO	•
Error	CO	•

CTRLDPR Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config)
- Output#: specifies a CTRIO output to be used by the instruction
- File#: specifies a CTRIO profile File number to be loaded
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range
CTRIO#K	K0-255
Output#K	K0-3
File#V,K	K0-255; See DL06 V-memory map - Data Words
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map
CTRLDPR Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

	СТ	RIO Config
1	CTRIO	IB-1000
	CTRIO#	K1
	Slot	K2
	Workspace	V400
	Input	V2000 - V2025
	Output	V2030 - V2061

Rung 2: This CTRIO Load Profile IBox will load File #1 into the working memory of Output 0 in CTRIO #1. This example program requires that you load CTRLDPR_IBox.cwb into your Hx-CTRIO module.

(example continued on next page)

CTRLDPR Example (con't)

Rung 3: If the file is successfully loaded, set Profile_Loaded.

CTRIO Read Error (CTRRDER) (IB-1014)

DS5 Used (HPP N/A (

CTRIO Read Error Code will get the decimal error code value from the CTRIO module (listed below) and place it into the given Error Code register, on a leading edge transition to the IBox

Since the Error Code in the CTRIO is only maintained until another CTRIO command is given, you must use this instruction immediately after the CTRIO IBox that reports an error via its Error bit parameter.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

S

Error Codes:

0: No Error

100: Specified command code is unknown or unsupported

101: File number not found in the file system

102: File type is incorrect for specified output function

103: Profile type is unknown

104: Specified input is not configured as a limit on this output

105: Specified limit input edge is out of range

106: Specified input function is unconfigured or invalid

107: Specified input function number is out of range

108: Specified preset function is invalid

109: Preset table is full

110: Specified Table entry is out of range

111: Specified register number is out of range

112: Specified register is an unconfigured input or output

2001: Error reading Error Code - cannot access CTRIO via ERM

CTRRDER Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config)
- Workspace: specifies a V-memory location that will be used by the instruction
- Error Code: specifies the location where the Error Code will be written

Parameter	DL06 Range
CTRIO#K	K0-255
WorkspaceV	See DL06 V-memory map - Data Words
Error CodeV	See DL06 V-memory map - Data Words

CTRRDER Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

	CTRIO	Config
1	CTRIO	IB-1000
	CTRIO #	K1
	Slot	K2
	Workspace	V400
	Input	V2000 - V2025
	Output	V2030 - V2061

Rung 2: This CTRIO Read Error Code IBox will read the Extended Error information from CTRIO #1. This example program requires that you load CTRRDER_IBox.cwb into your Hx-CTRIO module.

CTRIO Run to Limit Mode (CTRRTLM) (IB-1011)

DS5 Used HPP N/A

CTRIO Run To Limit Mode, on a leading edge transition to this IBox, loads the Run to Limit command and given parameters on a specific Output resource. The CTRIO's Input(s)

must be configured as Limit(s) for this function to work.

Valid Hexadecimal Limit Values:

- K00 Rising Edge of Ch1/C
- K10 Falling Edge of Ch1/C
- K20 Both Edges of Ch1/C
- K01 Rising Edge of Ch1/D
- K11 Falling Edge of Ch1/D
- K21 Both Edges of Ch1/D
- K02 Rising Edge of Ch2/C
- K12 Falling Edge of Ch2/C
- K22 Both Edges of Ch2/C
- K03 Rising Edge of Ch2/D
- K13 Falling Edge of Ch2/D

K23 - Both Edges of Ch2/D

This IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

CTRRTLM Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Frequency: specifies the output pulse rate (20Hz 20KHz)
- Limit: the CTRIO's Input(s) must be configured as Limit(s) for this function to operate
- Duty Cycle: specifies the % of on time versus off time. This is a hex number. Default of 0 is 50%, also entering 50 will yield 50%. 50% duty cycle is defined as on half the time and off half the time
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

√ Xì¤	٥
CTRIO F	Run To Limit Mode
CTRRTLM	IB-1011
CTRIO#	K0 •
Output #	K0 •
Frequency	V400 •
Limit	V400 •
Duty Cycle	V400 •
Workspace	V400 •
Success	C0 •
Error	C0 •

Parameter	DL06 Range
CTRIO#K	K0-255
Output#K	КО-3
FrequencyV,K	K20-20000; See DL06 V-memory map - Data Words
LimitV,K	K0-FF; See DL06 V-memory map - Data Words
Duty CycleV,K	K0-99; See DL06 V-memory map - Data Words
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

CTRRTLM Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

	CTRIO Config	
1	CTRIO	IB-1000
	CTRIO #	K1
	Slot	K2
	Workspace	V400
	Input	V2000 - V2025
	Output	V2030 - V2061

Rung 2: This CTRIO Run To Limit Mode IBox sets up Output #0 in CTRIO #1 to output pulses at a Frequency of 1000 Hz until Llimit #0 comes on. This example program requires that you load CTRRTLM_IBox.cwb into your Hx-CTRIO module.

		CTRIO Run To) Limit Mode
	Try_RTLM	CTRRTLM	IB-1011
_			
2			
		CTRIO#	K1
		Output #	K0
		Frequency	K1000
		Limit	K0
		Duty Cycle	K0
		Workspace	V401
		Success	C100
		Error	C101

(example continued on next page)

I

I

CTRRTLM Example (con't)

Rung 3: If the Run To Limit Mode parameters are OK, set the Direction Bit and Enable the output.

CTRIO Run to Position Mode (CTRRTPM) (IB-1012)

CTRIO Run To Position Mode, on a leading edge transition to this IBox, loads the Run to DS5 Used Position command and given parameters on a specific Output resource. HPP N/A

- Valid Function Values are:
- 00: Less Than Ch1/Fn1
- 10: Greater Than Ch1/Fn1
- 01: Less Than Ch1/Fn2
- 11: Greater Than Ch1/Fn2
- 02: Less Than Ch2/Fn1
- 12: Greater Than Ch2/Fn1
- 03: Less Than Ch2/Fn2
- 13: Greater Than Ch2/Fn2

This IBox will take more than 1 PLC scan

to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

<u>v x %</u>

CTRRTPM

CTRIO #

Output # Frequency

Function

Position

Success

Error

Duty Cycle

Workspace

CTRIO Run To Position Mode

K0

K0

V400

V400

V400

V400

V400

CO CO 0

•

٠

•

IB-1012

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

CTRRTPM Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Frequency: specifies the output pulse rate (20Hz 20KHz)
- Duty Cycle: specifies the % of on time versus off time. This is a hex number. Default of 0 is 50%, also entering 50 will yield 50%. 50% duty cycle is defined as on half the time and off half the time
- Position: specifies the count value, as measured on the encoder input, at which the output pulse train will be turned off
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range
CTRIO#K	K0-255
Output#K	K0-3
FrequencyV,K	K20-20000; See DL06 V-memory map - Data Words
Duty Cycle	K0-99; See DL06 V-memory map
PositionV,K	K0-2147434528; See DL06 V-memory map
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

CTRRTPM Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

		CTRIO Config
1	CTRIO	- IB-1000
	CTRIO#	K1
	Slot	K2
	Workspa	ce V400
	Input	V2000 - V2025
	Output	V2030 - V2061

S

(example continued on next page)

CTRRTPM Example (con't)

Rung 2: This CTRIO Run To Position Mode IBox sets up Output #0 in CTRIO #1 to output pulses at a Frequency of 1000 Hz, use the 'Greater than Ch1/Fn1' comparison operator, until the input position of 1500 is reached. This example program requires that you load CTRRTPM_IBox.cwb into your Hx-CTRIO module.

		CTRIO Run To P	osition Mode
	Try_RTPM	CTRRTPM	IB-1012
~			
4			
		CTRIO #	K1
		Output #	K0
		Frequency	K1000
		Function	K10
		Duty Cycle	K0
		Position	K1500
		Workspace	V401
		Success	C100
		Error	C101

Rung 3: If the Run To Position Mode parameters are OK, set the Direction Bit and Enable the output.

I

CTRIO Velocity Mode (CTRVELO) (IB-1013)

DS5 Used C HPP N/A C

CTRIO Velocity Mode loads the Velocity command and given parameters on a specific Output resource on a leading edge transition to this IBox.

This IBox will take more than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

√X¤	0
CTRIC) Velocity Mode
CTRVELO	IB-1013
CTRIO #	K0 •
Output #	K0 •
Frequency	V400 •
Duty Cycle	V400 •
Step Count	V400 •
Workspace	V400 •
Success	C0 •
Error	C0 •

CTRVELO Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Frequency: specifies the output pulse rate (20Hz 20KHz)
- Duty Cycle: specifies the % of on time versus off time. This is a hex number. Default of 0 is 50%, also entering 50 will yield 50%. 50% duty cycle is defined as on half the time and off half the time
- Step Count: specifies the target position as a 32-bit Hex number, a value of Kffffffff will cause the profile to run continuously as long as the output is enabled
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range
CTRIO#K	K0-255
Output#K	К0-3
FrequencyV,K	K20-20000; See DL06 V-memory map - Data Words
Duty CycleV,K	K0-99; See DL06 V-memory map
Step CountV,K	K0-2147434528; See DL06 V-memory map
WorkspaceV	See DL06 V-memory map - Data Words
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map

CTRVELO Example

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

	CTRIO Config	
1	CTRIO	IB-1000
	CTRIO#	K1
	Slot	K2
	Workspace	V400
	Input	V2000 - V2025
	Output	V2030 - V2061

Rung 2: This CTRIO Velocity Mode IBox sets up Output #0 in CTRIO #1 to output 10,000 pulses at a Frequency of 1000 Hz. This example program requires that you load CTRVELO_IBox.cwb into your Hx-CTRIO module.

		CTRIO Velocity Mode		
	Try_VELO	CTRVELO	IB-1013	
2		1		
		CTRIO#	K1	
		Output #	K0	
		Frequency	K1000	
		Duty Cycle	K0	
		Step Count	K10000	
		Workspace	V401	
		Success	C100	
		Error	C101	

(example continued on next page)

I

L

CTRVELO Example (con't)

Rung 3: If the Velocity Mode parameters are OK, set the Direction Bit and Enable the output.

CTRIO Write File to ROM (CTRWFTR) (IB-1006)

DS5	Used	
HPP	N/A	ľ

CTRIO Write File to ROM writes the runtime changes made to a loaded CTRIO Preset Table back to Flash ROM on a leading edge transition to this IBox. This IBox will take more

than 1 PLC scan to execute. Either the Success or Error bit will turn on when the command is complete. If the Error Bit is on, you can use the CTRIO Read Error Code (CTRRDER) IBox to get extended error information.

The Workspace register is for internal use by this IBox instruction and MUST NOT be used anywhere else in your program.

√X¤	0	
CTRIO Write File to ROM		
CTRWFTR	IB-1006	
CTRIO #	ко •	
Output #	ко •	
Workspace	V400 •	
Success	C0 •	
Error	C0 •	

CTRWFTR Parameters

- CTRIO#: specifies a specific CTRIO module based on a user defined number (see CTRIO Config Ibox)
- Output#: specifies a CTRIO output to be used by the instruction
- Workspace: specifies a V-memory location that will be used by the instruction
- Success: specifies a bit that will turn on once the instruction has successfully completed
- Error: specifies a bit that will turn on if the instruction does not complete successfully

Parameter	DL06 Range	
CTRIO#K	K0-255	
Output#K	K0-3	
WorkspaceV	See DL06 V-memory map - Data Words	
SuccessX,Y,C,GX,GY,B	See DL06 V-memory map	
ErrorX,Y,C,GX,GY,B	See DL06 V-memory map	

CTRWFTR Example

I

Rung 1: This sets up the CTRIO card in slot 2 of the local base. Each CTRIO in the system will need a separate CTRIO I-box before any CTRxxxx I-boxes can be used for them. The CTRIO has been configured to use V2000 through V2025 for its input data, and V2030 through V2061 for its output data.

	CTRIO Config	
1	CTRIO	IB-1000
	CTRIO #	K1
	Slot	K2
	Workspace	V400
	Input	V2000 - V2025
	Output	V2030 - V2061

Rung 2: This CTRIO Edit Preset Table Entry IBox will change Entry 0 in Table #2 to be a RESET at Count 3456. This example program requires that you load CTRWFTR_IBox.cwb into your Hx-CTRIO module.

		CTRIO Edit Preset T	able Entry
	Try_EDPT	CTREDPT	IB-1003
2			
2			
		CTRIO#	K1
		Output #	KO
		Table #	K2
		Entry # (0-based)	K0
		Entry Type	K1
		Pulse Time	K0
		Preset Count	K3456
		Workspace	V401
		Success	C100
		Error	C101

(example continued on next page)

CTRWFTR Example (con't)

Rung 3: If the file is successfully edited, use a Write File To ROM IBox to save the edited table back to the CTRIO's ROM, thereby making the changes retentive.

